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Abstract

This dissertation has been submitted to the Faculdade de Ciências da Universidade do

Porto in partial fulfillment of the requirements for the PhD degree in Astronomy. The

scientific results presented herein follow from the research activity performed under the

supervision of Dr. Mário João Monteiro at the Centro de Astrof́ısica da Universidade do

Porto and Dr. Hans Kjeldsen at the Institut for Fysik og Astronomi, Aarhus Universitet.

The dissertation is mainly composed of three chapters and a list of appendices.

Chapter 1 serves as an unpretentious and rather general introduction to the field of

asteroseismology of solar-like stars. It starts with an historical account of the field of

asteroseismology followed by a general review of the basic physics and properties of

stellar pulsations. Emphasis is then naturally placed on the stochastic excitation of

stellar oscillations and on the potential of asteroseismic inference. The chapter closes

with a discussion about observational techniques and the observational status of the

field. Given my exclusive role as a data analyst, I have devoted Chapter 2 to the subject

of data analysis in asteroseismology. This is an extensive subject, therefore I have

opted for presenting a compilation of relevant data analysis methods and techniques

employed contemporarily in asteroseismology of solar-like stars, and of which I have

made recurrent use. Special attention has been drawn to the subject of statistical

inference both from the competing Bayesian and frequentist perspectives, a matter

that I consider to be currently in vogue. The chapter ends with a description of the

implementation of a pipeline for mode parameter analysis of Kepler data. In the course

of these two first chapters, reference is made to a series of published articles that have

greatly benefited from my contribution and are, for that reason, collected in Appendices

A to E. Chapter 3 then goes on to present a series of additional published results to

which my contribution has been significant, although in a somewhat less determinant

way. The compendium of scientific results presented in this dissertation is, to my mind,

representative of my research activity and technical expertise.
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The dawn of a new and prosperous era for the field of asteroseismology coin-

cided with the development of space-based missions using the technique of ultra-high-

precision photometry. The advent of the French-led CoRoT and NASA Kepler space

missions had finally provided the possibility of carrying out long and almost uninter-

rupted observations of a multitude of targets, being at the same time capable of detect-

ing faint solar-like oscillations in main-sequence stars. The main goal of my research

activity has been the development of innovative data analysis methods and subsequent

interpretation of the results in the context of space-based asteroseismology. That being

said, the development of two pipelines for the analysis of Kepler asteroseismic data,

together with the development of a Bayesian peak-bagging tool based on Markov chain

Monte Carlo techniques, constitute some of the main outcomes of my research work.

An active membership of the Kepler Asteroseismic Science Consortium (KASC)

has allowed me not only to exchange technical skills and relevant knowledge with other

members of the consortium, but also to take part in – and even lead – a series of

workpackages covering a diversity of scientific aims, ranging from the comprehensive

analysis of single objects to ensemble and differential asteroseismology. In this regard,

I would highlight the analysis of multi-month time-series data on four evolved Sun-like

stars, the very first results from ensemble asteroseismology based on a large cohort of

solar-type field stars, and the observational confirmation of the presence of solar-like

oscillations in a δ Sct star.

Despite having focused my efforts on Kepler -related investigations, I have still man-

aged to sporadically contribute to the analysis of targets observed by CoRoT (e.g.,

establishing a definite mode identification for the F-type star HD 49933, or character-

izing the exoplanet-host solar-like star HD 52265 using both spectroscopic and seismic

data) or during ground-based campaigns (e.g., a multi-site campaign dedicated to Pro-

cyon, or an asteroseismic and interferometric study of the solar twin 18 Scorpii), thus

widening the scope of my research.
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Sumário

Esta dissertação foi submetida à Faculdade de Ciências da Universidade do Porto no

cumprimento parcial dos requisitos necessários à obtenção do grau de Doutor. Os resul-

tados cient́ıficos aqui apresentados decorrem da actividade de investigação realizada sob

a orientação do Dr. Mário João Monteiro do Centro de Astrof́ısica da Universidade do

Porto e do Dr. Hans Kjeldsen do Institut for Fysik og Astronomi, Aarhus Universitet.

A dissertação é composta principalmente de três caṕıtulos e de uma lista de anexos.

O primeiro caṕıtulo serve de introdução despretensiosa e bastante geral ao campo da as-

terossismologia de estrelas do tipo solar. Começa com um relato histórico do campo da

asterossismologia seguido de uma revisão da f́ısica básica e propriedades das pulsações

estelares. É então dado natural ênfase à excitação estocástica de oscilações estelares e

ao potencial da inferência asterosśısmica. O caṕıtulo termina com uma discussão sobre

técnicas de observação e sobre o estado actual do campo em termos observacionais.

Dado o meu papel exclusivo como analista de dados, consagrei o segundo caṕıtulo ao

tema da análise de dados em asterossismologia. Este é um tema extenso e, por esse

motivo, optei por apresentar uma compilação de métodos e técnicas de análise de da-

dos relevantes, utilizados contemporaneamente na asterossismologia de estrelas do tipo

solar, e dos quais fiz uso recorrente. Foi dada especial atenção ao tema da inferência es-

tat́ıstica tanto de uma perspectiva Bayesiana como de uma perspectiva frequentista, um

assunto que considero estar actualmente em voga. O caṕıtulo termina com a descrição

da implementação de um pipeline usado na análise dos parâmetros de modos de os-

cilação presentes em dados do satélite Kepler. Ao longo destes dois primeiros caṕıtulos,

é feita referência a uma série de artigos publicados que beneficiaram de modo determi-

nante da minha contribuição e que, por essa razão, aparecem compilados na lista de

anexos. O terceiro caṕıtulo passa então a apresentar uma série adicional de resultados

publicados, para a obtenção dos quais a minha contribuição foi significativa, embora

de forma não tão determinante. O compêndio de resultados cient́ıficos apresentados
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nesta dissertação é, a meu ver, representativo da minha actividade de investigação e

conhecimento técnico.

O alvorecer de uma nova e próspera era para o campo da asterossismologia coin-

cidiu com o desenvolvimento de missões espaciais empregando a técnica de fotometria

de muito alta precisão. O advento da missão espacial francesa CoRoT e do satélite

Kepler da NASA, tornou finalmente posśıvel a realização de observações demoradas

e quase ininterruptas de um sem-número de estrelas, sendo ao mesmo tempo essas

missões capazes de detectar ténues oscilações do tipo solar em estrelas da sequência

principal. O objectivo principal da minha actividade de investigação consistiu no de-

senvolvimento de métodos inovadores de análise de dados e subsequente interpretação

dos resultados no âmbito da asterossismologia espacial. Dito isto, o desenvolvimento de

dois pipelines usados na análise de dados provenientes do satélite Kepler, juntamente

com o desenvolvimento de uma ferramenta Bayesiana a usar na análise de espectros de

potência, constituem alguns dos principais resultados do meu trabalho de investigação.

Uma participação activa no âmbito do KASC (Kepler Asteroseismic Science Con-

sortium) permitiu-me não só a partilha de competências técnicas e conhecimentos rele-

vantes com os demais membros do consórcio, mas também integrar, e até mesmo liderar,

uma série de grupos de trabalho abrangendo uma diversidade de fins cient́ıficos, desde a

análise detalhada de objectos individuais à prática estat́ıstica da asterossismologia com

base em grupos numerosos de estrelas. A este respeito, gostaria de destacar a análise

das séries temporais, com a duração de vários meses, de quatro estrelas evolúıdas do

tipo solar, os primeiros resultados provenientes da prática estat́ıstica da asterossismolo-

gia com base num grande número de estrelas de campo do tipo solar, e a confirmação

observacional da presença de oscilações do tipo solar numa estrela δ Sct.

Apesar de ter centrado os meus esforços em investigações relacionadas com o Kepler,

pude ainda contribuir esporadicamente para a análise de estrelas observadas pela missão

espacial CoRoT (por exemplo, estabelecendo de modo definitivo a identificação dos

modos de oscilação da estrela HD 49933, de tipo espectral F, ou ao caracterizar a

estrela de tipo solar HD 52265, que também alberga um exoplaneta, através do uso de

dados śısmicos e espectroscópicos) ou durante campanhas de observação feitas a partir

do solo (por exemplo, um campanha envolvendo vários telescópios dedicada a Procyon,

ou um estudo śısmico e interferométrico de 18 Scorpii, uma estrela muito semelhante

ao nosso Sol), tendo assim alargado o âmbito da minha actividade de investigação.
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• Doğan, G., Bonanno, A., Bedding, T. R., et al. 2010, Astronomische Nachrichten,

331, 949

URL: http://adsabs.harvard.edu/abs/2010AN....331..949D

• Karoff, C., Chaplin, W. J., Appourchaux, T., et al. 2010, Astronomische Nachrichten,

331, 972

URL: http://adsabs.harvard.edu/abs/2010AN....331..972K

Preprints

• Mathur, S., Metcalfe, T. S., Woitaszek, M., et al. 2012, ApJ, in press [arXiv:1202.2844v1]

URL: http://arxiv.org/abs/1202.2844
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Chapter 1

Asteroseismology of solar-like

stars

This chapter introduces the field of asteroseismology of solar-like stars by presenting

and discussing a series of key concepts that are essential for a complete understanding

of the remaining of this dissertation. Following a brief historical account of the field of

asteroseismology, an overview of the origin and nature of stellar pulsations is presented

to the reader. The basic properties of oscillation modes are discussed next, before

particular attention is paid to the process of stochastic excitation of oscillations and to

the potential of asteroseismic inference. The chapter ends with summaries of the main

observational techniques used in the field and of its observational status.

The current chapter is by no means intended as a thorough review of the field.

To serve that purpose I would strongly recommend the book by Aerts et al. (2010),

J. Christensen-Dalsgaard’s Lecture Notes on Stellar Oscillations1, and the reviews by

Christensen-Dalsgaard (2004), Cunha et al. (2007) and Bedding (2011), on which the

following discussion is somewhat based.

1.1 A brief encounter with history

The longest known case of a pulsating star is that of o Ceti (Mira), the discovery of

its variability being attributed to a Lutheran pastor and amateur astronomer named

David Fabricius in 1596 (e.g., Hoffleit 1997). The star was then practically forgotten

1http://users-phys.au.dk/jcd/oscilnotes/

1
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

until Johann Fokkens Holwarda rediscovered it in 1638 and found that its magnitude

varied periodically with a period of eleven months. By the time of the second centennial

of its discovery, 1796, eleven variables had been discovered, four of them of the Mira

type. However, firm establishment that such variability is in many cases due to intrinsic

stellar pulsations came only in the twentieth century. In this regard Shapley (1914)

wrote: “The main conclusion is that the Cepheid and cluster variables are not binary

systems, and that the explanation of their light-changes can much more likely be found

in a consideration of internal or surface pulsations of isolated stellar bodies.”

Early studies of pulsating stars were obviously restricted to large-amplitude pul-

sators such as the Cepheids and the long-period variables. The simple pulsatory be-

havior of these stars was interpreted in terms of pulsations in the fundamental radial

mode, characterized by expansion of the star followed by its contraction, while pre-

serving spherical symmetry. The discovery of the period-luminosity relation for the

Cepheids by Henrietta Swan Leavitt (Leavitt 1908; Leavitt & Pickering 1912) sup-

plied the foundation for the measurement of extragalactic distances. The decades that

followed saw emphasis being placed on understanding the mechanism driving the pul-

sations, which would first be arrived at independently by Cox & Whitney (1958) and

Zhevakin (1963). The latter reference provides a review of the early developments of

such studies.

The first detections of the oscillatory motion in the atmosphere of the Sun (as

local modes), with periods of approximately five minutes, were made in the early 1960s

by Leighton et al. (1962), paving the way for the development of helioseismology, by

then an entire new field of research. The first detection and identification of these

oscillations as global modes is attributed to Claverie et al. (1979). Helioseismology has

ever since proved to be extremely successful in probing the physics and dynamics of

the solar interior. The vast amount of data on solar oscillations made available in the

last two decades led to a considerably accurate determination of the solar sound speed,

detailed testing of the equation of state and inference of the solar internal rotation

(e.g., Christensen-Dalsgaard 2002; Basu & Antia 2008; Chaplin & Basu 2008; Howe

2009, and references therein).

The Sun is, however, a single star at a specific evolutionary stage, and it is further

structurally simple if compared with certain other stars. A logical consequence was

therefore the advent of asteroseismology, whereby one would expect to be able to probe

2



1.2 Overview of the origin and nature of stellar pulsations

the interiors of stars other than the Sun through the use of their intrinsic oscillations.

The limited spatial resolution with which we can observe distant stars poses, however,

a serious obstacle. Moreover, the very small number of oscillation frequencies observed

for most of the pulsating stars renders them unsuitable for the pursuit of asteroseismic

studies. Nonetheless, the field thrived and we are today able to proudly answer Sir

Arthur Eddington’s famous lament (Eddington 1926): “What appliance can pierce

through the outer layers of a star and test the conditions within?”

The definite detection of solar-like oscillations in stars other than the Sun had long

been an illusory goal due to their very small amplitudes, particularly for main-sequence

stars. However, the development of very stable techniques for radial-velocity observa-

tions, promoted by the hunt for extrasolar planets, produced a major breakthrough in

the field by the turn of the millennium and led to the detection of solar-like oscillations

in several stars (e.g., Bedding & Kjeldsen 2003). That was only the beginning of an

exciting and successful journey.

1.2 Overview of the origin and nature of stellar pulsations

In order to conduct an asteroseismic study and to fully explore the diagnostic potential

of the observed oscillations, one has to understand first their origin and physical nature.

A relevant timescale in understanding the properties of oscillations is the dynamical

timescale:

tdyn =
(
R3

GM

)1/2

∝ (Gρ)−1/2 , (1.1)

where R and M are the surface radius and mass of the star, respectively, G is the

gravitational constant, and ρ is the mean stellar density. The periods of the oscillations

generally scale as tdyn. More specifically, tdyn expresses the time the star needs to

go back into hydrostatic equilibrium whenever some dynamical process disrupts the

balance between pressure and gravitational force. Pressure modes (see below) may be

the cause of such a disturbance and so their oscillation periods should not exceed tdyn.

It is remarkable how the measurement of a period of oscillation immediately provides

us with an estimate of an intrinsic property of the star, namely, its mean density.

Many stars, including the Sun, pulsate in more complex ways than the Cepheids do,

being ubiquitous for more than one mode of oscillation to be excited simultaneously.
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

These modes may include radial overtones, in addition to the fundamental radial mode,

as well as non-radial modes, whose motion does not preserve spherical symmetry.

The physical nature of the oscillations concerns the restoring force at play: modes

are of the nature of either standing acoustic waves (p modes) with pressure acting as

the restoring force or internal gravity waves (g modes; these are exclusively non-radial

modes) with buoyancy acting as the restoring force. There is a clear separation between

these two classes of modes in unevolved stars. This, however, may not be the case in

evolved stars. Due to strong internal gradients in the chemical composition or large

gravitational acceleration in a compact core, modes of mixed p- and g-mode character

may occur in evolved stars. In addition, the Sun also displays surface gravity waves of

large horizontal wave number (f modes).

When talking about their origin, one means the mechanism responsible for driving

the oscillations. Oscillations can be either intrinsically unstable or intrinsically sta-

ble. In the former case, oscillations result from the amplification of small disturbances

by means of a heat-engine mechanism converting thermal into mechanical energy in a

specific region of the star, usually a radial layer. This region is heated up during the

compressional phase of the pulsation cycle while being cooled off during expansion. An

amplitude-limiting mechanism then sets in at some point, determining the final ampli-

tude of the growing disturbance. Such a region inside the star is typically associated

with opacity (κ) features and the resulting driving mechanism is thus known as the κ

mechanism. The κ mechanism is responsible for the oscillatory behavior in Cepheids,

RR Lyrae stars, δ Sct stars, β Cep stars, and in most of the pulsating classes displayed

in Fig. 1.1. A particularly important area depicted in that figure is the Cepheid (or

classical) instability strip, where pulsating class members are believed to have their os-

cillations driven by an opacity mechanism associated with the second helium-ionization

zone. In order to cause overall excitation of the oscillations, the region associated with

the driving has to be placed at an appropriate depth inside the star, thus providing an

explanation for the specific location of the resulting instability belt in the H-R diagram.

This type of oscillations are generally known as classical oscillations.

On the other hand, intrinsically stable oscillations, such as the solar five-minute

oscillations, are stochastically excited by the vigorous near-surface convection. This

type of oscillations, having first been detected in the Sun, are referred to as solar-like

oscillations. Solar-like oscillations are predicted for all stars cool enough to harbor an
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1.3 Basic properties of oscillation modes

outer convective envelope, and are thus found among main-sequence core, and post-

main-sequence shell, hydrogen-burning stars, residing on the cool side of the Cepheid

instability strip. Besides main-sequence stars with masses up to about 1.5M�, solar-like

oscillations are also expected to occur from the end of the main sequence up to the giant

and asymptotic giant branches. The resulting mode amplitudes are considerably smaller

than those generally found in classical pulsators. However, the stochastic process is

characterized by varying slowly with frequency and hence modes tend to be excited to

comparable amplitudes within a substantial frequency range. This happens in contrast

to the distribution of mode amplitudes of classical pulsators which is highly irregular

over the range of unstable modes.

1.3 Basic properties of oscillation modes

1.3.1 Describing the oscillations

Small-amplitude oscillations of a spherically symmetric star depend on co-latitude θ

and longitude φ in terms of a spherical harmonic Y m
l (θ, φ). Use is made of spherical

polar coordinates, (r, θ, φ), where r is the distance to the center of the star. The degree

l specifies the number of nodal surface lines, i.e., the complexity of the mode, better

understood by defining the surface horizontal wave number, k(surf)
h :

k
(surf)
h =

√
l(l + 1)
R

. (1.2)

Radial modes have l= 0, whereas for non-radial modes l > 0. The azimuthal order is

represented by m, with |m| specifying how many of the nodal surface lines are lines of

longitude. Values of m range from −l to l, and thus there are 2l + 1 modes for each

multiplet of degree l. Figure 1.2 illustrates the appearance of the l=3 octupole modes

on a stellar surface. Modes are additionally characterized by the radial order n, which

is related to the number of radial nodes.

As an example of an eigenfunction, I introduce the radial component of displacement

which may be expressed as

ξr(r, θ, φ; t) = <{a(r)Y m
l (θ, φ) exp(−i 2πνt)} , (1.3)

where a(r) is an amplitude function, and ν is the (cyclic) frequency of oscillation. For

a spherically symmetric star the frequency of oscillation depends only on n and l, i.e.,
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.1: Pulsating stars across the Hertzsprung-Russell diagram - Several
classes of pulsating stars, for which asteroseismology is possible, have been located. Teff

and L are the effective temperature and stellar luminosity, respectively. The dashed line
indicates the zero-age main sequence (ZAMS), the solid curves represent selected evolu-
tionary tracks (for 1, 2, 3, 4, 7, 12, and 20 M�), the triple-dot-dashed line indicates the
horizontal branch and the dotted curve follows the white-dwarf cooling track. The parallel
long-dashed lines enclose the Cepheid instability strip. From Bedding et al. (2007a).
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1.3 Basic properties of oscillation modes

Figure 1.2: Freeze-frame of the radial component of the l=3 octupole modes -
Rows display the same modes although with different inclination angles of the polar axis
with respect to the line of sight: 30◦ (top row), 60◦ (middle row), and 90◦ (bottom row).
White bands represent the nodal surface lines. Red and blue sections represent portions of
the stellar surface that are moving in and out, respectively. The rightmost column displays
the axisymmetric (i.e., with m = 0) mode (l = 3,m = 0). From right to left, the middle
columns display the tesseral (i.e., with 0< |m|<l) modes (l=3,m=±1) and (l=3,m=±2).
The leftmost column displays the sectoral (i.e., with |m|= l) mode (l=3,m=±3). Figure
courtesy of Conny Aerts.

ν=νnl. The spherical harmonic Y m
l (θ, φ) is expressed as

Y m
l (θ, φ) = (−1)m clm Pml (cos θ) exp(imφ) , (1.4)

where Pml is an associated Legendre function given by

Pml (cos θ) =
1

2ll!
(1− cos2 θ)m/2

dl+m

d cosl+m θ
(cos2 θ − 1)l , (1.5)

and the normalization constant clm is determined by

c2
lm =

(2l + 1)(l −m)!
4π(l +m)!

, (1.6)

such that the integral of |Y m
l |2 over the unit sphere is unity.
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

1.3.2 Spatial filtering

Unlike the case of the Sun, for which modes of very high degree l can be observed,

we have not yet reached the stage where we can resolve stellar surfaces using either

velocity or intensity observations. In the stellar case our observations actually result

from weighted averages of the pulsation amplitude over the stellar disk. Consequently,

modes of moderate and high degree l, and hence of increasing complexity, tend to

average out in what is known as partial cancellation or spatial filtering. Particularly

for solar-like oscillations, whose intrinsic amplitudes are rather low, this means that only

modes of the lowest degree, i.e., with l≤3, are expected to be observed. Furthermore,

in the case of velocity observations, the projection of the velocity onto the line of sight

introduces an extra factor of cos θ in the weighting function. This effectively gives more

sensitivity to the center of the disk relative to the limb, ultimately resulting in a slightly

larger response to modes of l=3 than for intensity observations.

The preceding considerations can be supported by very simple calculations. Assum-

ing the case of surface-integrated intensity of an axisymmetric mode over the stellar

disk, while neglecting the effects of limb darkening and rotation, the spatial response

function S
(I)
l is then given by

S
(I)
l = 2

√
2l + 1

∫ π/2

0
P 0
l (cos θ) cos θ sin θ dθ . (1.7)

A similar calculation can be carried out for the case of velocity observations and as-

suming that the velocity field is predominantly in the radial direction, giving

S
(V)
l = 2

√
2l + 1

∫ π/2

0
P 0
l (cos θ) cos2 θ sin θ dθ . (1.8)

The spatial response functions S(I)
l and S

(V)
l are plotted in Fig. 1.3 as a function of l.

Kjeldsen et al. (2008a) provide spatial responses to modes with degree l relative to

those with l=0 for a set of intensity and velocity observations (see their table 1). Radial

modes make a sensible reference since they are not split by rotation, as will be seen

in Sect. 1.3.5. Those ratios were computed using the results of Christensen-Dalsgaard

(1989) and Bedding et al. (1996). Particularly useful is the latter work, where the

authors provide approximate expressions for computing the spatial response functions

taking into account the effect of limb darkening. Those expressions are, however, only

valid in the case of a slow rotator. Recently, Salabert et al. (2011) provided precise
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1.3 Basic properties of oscillation modes

Figure 1.3: Spatial response functions - S(I)
l and S(V)

l for surface-integrated intensity
and velocity, respectively, are plotted as a function of l. Negative values of either quan-
tity mean that the oscillations will appear to have reversed phases. Figure courtesy of
J. Christensen-Dalsgaard.

estimates of mode visibilities for radial-velocity and photometric observations of the

Sun-as-a-star (i.e., whole-disk observations of the Sun), further comparing them to

theoretical predictions.

Table 1.1 displays the relative spatial response functions Sl/S0, computed according

to Bedding et al. (1996), for a number of present and upcoming instruments/missions

used to measure solar-like oscillations. Those performing intensity measurements are

the red channel of the VIRGO/SPM instrument (Fröhlich et al. 1995, 1997) on board

the SOHO spacecraft, as well as the CoRoT (Baglin et al. 2006) and NASA Kepler

(Borucki et al. 2010; Koch et al. 2010) space missions. On the other hand, radial-

velocity measurements are performed by the HARPS spectrograph (Mayor et al. 2003)

and are the purpose of the forthcoming SONG network (Grundahl et al. 2009a,b).
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Table 1.1: Relative spatial response functions Sl/S0 - These are given for a number
of present and upcoming instruments/missions.

Intensity Velocity
VIRGO/SPM CoRoT Kepler HARPS SONG

(862 nm) (660 nm) (641 nm) (535 nm) (550 nm)

S0/S0 1.00 1.00 1.00 1.00 1.00
S1/S0 1.20 1.22 1.22 1.35 1.35
S2/S0 0.67 0.70 0.71 1.02 1.01
S3/S0 0.10 0.14 0.14 0.48 0.47
S4/S0 −0.10 −0.09 −0.08 0.09 0.09

1.3.3 Understanding the behavior of mode eigenfunctions

The diagnostic potential of the oscillation frequencies can be better understood through

asymptotic analyses of the oscillation equations. This sort of approach approximates

these equations to such an extent that they can be discussed analytically. The fact that

a reasonable number of classes of pulsating stars display high-order acoustic or gravity

modes justifies employing an asymptotic analysis.

An approximate asymptotic description of the oscillation equations has been derived

by D. O. Gough (Deubner & Gough 1984; Gough 1986, 1993), on the basis of an earlier

work by Lamb (1932):
d2X

dr2
+K(r)X = 0 , (1.9)

where

K(r) =
ω2

c2

[
1− ω2

c

ω2
−
S2
l

ω2

(
1− N2

ω2

)]
, (1.10)

and

X = c2ρ1/2 div δr . (1.11)

The adiabatic sound speed, c, is given by c2 = Γ1 p/ρ, p being pressure, and Γ1 =

(∂ ln p/∂ ln ρ)ad being the adiabatic exponent relating pressure and density; δr is the

displacement vector in the last equation. The behavior of the eigenfunction of a mode

is determined by three characteristic (angular) frequencies varying throughout the

star: the acoustic (Sl), the buoyancy (N), and the acoustic cut-off (ωc) frequencies

(cf. Eq. 1.10). Figure 1.4 displays the three characteristic frequencies as a function of

fractional radius for a set of selected stellar models.

10



1.3 Basic properties of oscillation modes

The acoustic (or Lamb) frequency1 Sl is determined by

S2
l =

l(l + 1) c2

r2
, (1.12)

being interpreted as the frequency of a sound wave traveling horizontally with local

wave number kh =
√
l(l + 1)/r.

The buoyancy (or Brunt-Väisälä) frequency N is determined by

N2 = g

(
1

Γ1

d ln p
dr
− d ln ρ

dr

)
≈ g2ρ

p
(∇ad −∇+∇µ) , (1.13)

where g is the local gravitational acceleration. To obtain the second equality, the gas

has been regarded as a fully-ionized ideal gas and the effects of degeneracy and radiation

pressure, as well as of Coulomb interactions, have been neglected. This constitutes a

fairly good approximation in much of the interior of the majority of stars. The resulting

simple equation of state, p= ρ kBT/µmu, where kB is Boltzmann’s constant, µ is the

mean molecular weight, and mu is the atomic mass unit, then leads to

c =

√
Γ1 kBT

µmu
, (1.14)

with the sound speed depending on the temperature and chemical composition of the

gas. Moreover,

∇ =
d lnT
d ln p

, ∇ad =
(
∂ lnT
∂ ln p

)
ad

, ∇µ =
d lnµ
d ln p

. (1.15)

For N2>0, N can be interpreted as the frequency of a gas element of reduced horizontal

extent which oscillates due to buoyancy. Conversely, regions for which N2 < 0 satisfy

the Ledoux criterion of convective instability, i.e.,

∇ > ∇ad +∇µ . (1.16)

Gravity waves cannot, therefore, propagate in convective regions.

The acoustic cut-off frequency ωc is determined by

ω2
c =

c2

4H2
ρ

(
1− 2

dHρ

dr

)
, (1.17)

1Note that both the Lamb frequency and the spatial response function are represented by Sl.

However, with attention to context, this should not result in confusion.
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

where Hρ=−(d ln ρ/dr)−1 is the density scale height. In an isothermal atmosphere, Hρ

is constant, and thus ωc =c/(2Hρ). In the solar atmosphere, Hρ≈120km, corresponding

to a (cyclic) cut-off frequency of about 5mHz, or a period of 3 minutes. A useful relation,

describing the behavior of the acoustic cut-off frequency (in units of ωdyn =2π/tdyn) as

a function of the stellar parameters, is given by

ωc

ωdyn
∝
(
M

M�

)1/2 ( L

L�

)−1/4 ( Teff

Teff,�

)1/2

. (1.18)

The eigenfunction of a mode oscillates as a function of r in regions satisfying

K(r)>0, where it is said to be propagating. Conversely, in regions satisfying K(r)<0,

the eigenfunction behaves exponentially, and it is said to be evanescent. Finally, the

location of the turning points of the eigenfunction are determined by K(r) = 0. Typi-

cally, the eigenfunction has large amplitude in just one, dominant, propagating region,

with the solution decaying exponentially away from it. This region, where the mode is

said to be trapped, will then determine the eigenfrequency according to suitable phase

relations at its boundaries.

Let us start off with the superficial layers. Here, typically ω�Sl and the behavior

of the eigenfunction is thus controlled by ωc; the role of ωc is, nonetheless, minor in

the remaining of the star, where the properties of the eigenfunction are effectively

controlled by Sl and N . Modes with frequency below the atmospheric value of ωc or,

equivalently, with wavelength exceeding the density scale height, decay exponentially

in the atmosphere, being reflected back and hence ending up trapped inside the star.

In unevolved stars (e.g., the Sun) the buoyancy frequency N remains at relatively

low values throughout the star, in which case the behavior of a high-frequency mode is

mostly controlled by Sl. The eigenfunction of such a mode will be trapped between the

near-surface reflection determined by ω=ωc and an inner turning point located where

Sl(rt)=ω, or
c2(rt)
r2

t

=
ω2

l(l + 1)
, (1.19)

with rt being determined by l and ω. These are p modes, and so are the solar five-

minute oscillations. For p modes, typically ω�N , and K may thus be approximated

by

K(r) ≈ 1
c2

(ω2 − S2
l ) . (1.20)
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1.3 Basic properties of oscillation modes

Figure 1.4: Dimensionless characteristic frequencies - The characteristic frequencies
are given, in units of ωdyn and as a function of the fractional stellar radius, for a 1-M�

ZAMS model, a model of the present Sun and a model of η Boo (a 1.63-M� subgiant in
the shell hydrogen-burning phase). Dot-dashed lines represent Sl, for l= 1 and l= 2, in
the solar model (red) and the model of η Boo (black), being barely indistinguishable. The
buoyancy frequency N is represented – except for the atmosphere – by a dashed line in
the ZAMS model (green) and the solar model (red), and by a solid line in the model of η
Boo. The dotted line represents ωc in the model of η Boo from the base of the convective
envelope outward. The horizontal line represents the frequency of a stochastically-excited
l=1 mode in the model of η Boo, being thicker in regions where the mode propagates (see
discussion in the text). From Cunha et al. (2007).

In this approximation, the dynamics of the p modes is therefore solely determined by

the variation of the sound speed with r. From Eq. (1.19) it turns out that, for low-

degree modes, rt is small, meaning that those modes will sample most of the stellar

interior. Radial p modes, in particular, travel all the way to the center of the star.

Figure 1.5 illustrates the propagation of acoustic waves in a so-called ray plot.

Let us continue looking at the case of an unevolved star. Low-frequency modes

13



1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.5: Acoustic-ray propagation in a cross-section of the solar interior - A
mode with l=30 and ν=3 mHz penetrates deeper into the Sun than a mode with l=100
and ν=3 mHz. The lines perpendicular to the ray path of the l=30 mode represent wave
fronts. As the acoustic wave propagates into the star, the deeper wave fronts experience a
higher sound speed. As a consequence, the ray path is bent away from the radial direction.
At the inner turning point waves travel horizontally and undergo total internal refraction.
At the surface, the acoustic waves are reflected due to a sudden decrease in density. Figure
courtesy of J. Christensen-Dalsgaard.

satisfy ω� Sl throughout most of the stellar radius. Under these circumstances the

eingenfunction of a mode oscillates in a region approximately determined by ω < N ,

and thus to great extent independent of the degree l. These are g modes, having one

turning point very near the center of the star and a second one just below the base of

the convection zone. For g modes in general ω2�S2
l , and K may then be approximated

by

K(r) ≈ 1
ω2

(N2 − ω2)
l(l + 1)
r2

. (1.21)

It is now obvious that the dynamics is controlled by the variation of N with r.

However, it is evident from Eq. (1.13) and Fig. 1.4 that N may attain very large

values in the core of an evolved star. This comes as a result of an increase of the

local gravitational acceleration g due to the contraction of the core. Furthermore,
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1.3 Basic properties of oscillation modes

strong gradients in the hydrogen abundance may enhance that effect by causing ∇µ
to become a large positive number. Consequently, even at high frequencies close to

the atmospheric value of ωc, relevant for stochastic excitation, K may have a positive

value both in the envelope where ω>Sl, N (p-mode behavior), and in the deep interior

where ω<Sl, N (g-mode behavior). This interchangeable physical nature is illustrated

in Fig. 1.4 for a stochastically-excited l=1 mixed mode in the model of η Boo. A more

detailed discussion on these so-called mixed modes will be presented in Sect. 1.5.3.

1.3.4 p modes and g modes in the Sun

At this stage it is instructive to have a quick look at the eigenfrequencies computed for

a model of the present Sun. These are displayed in Fig. 1.6 as a function of degree l.

Two distinct, although slightly overlapping, families of modes are obvious, viz., p and g

modes. The frequencies of p modes are seen to increase with radial order n and degree

l. The frequencies of g modes – also increasing with l – are now seen to decrease with

overtone (i.e., with the number of radial nodes |n|), while increasing with n1. Since

buoyancy demands gas motions that are primarily horizontal, there are no radial (i.e.,

l=0) g modes.

A third family of modes, labeled with n= 0, although similar in behavior to the p

modes, are in fact physically distinct. They are surface gravity waves and are known

as f modes.

1.3.5 The effect of rotation

The dependence of the oscillations on the azimuthal order m has been so far neglected.

From Eqs. (1.3) and (1.4) it can be seen that, for m 6= 0, the exponentials in both

equations combine to give exp[−i (2πνt−mφ)]. The extra phase in this time-dependent

term means that modes with m 6=0 are in fact traveling waves; modes formed by waves

moving with the rotation of the star are called prograde modes (positive m), while

those formed by waves traveling against the rotation of the star are called retrograde

modes (negative m).

1Here, I adopt the convention that n is negative for g modes, with |n| corresponding to the number

of radial nodes in the eigenfunction. On the other hand, p modes are assigned positive values of n

corresponding to the number of radial nodes.
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.6: Computed eigenfrequencies for a model of the present Sun - Although
only integral l have physical meaning, continuous lines are shown for clarity. Selected values
of the radial order n are indicated for the p modes. Close inspection tells us that the solar
five-minute oscillations are indeed standing acoustic waves, generally of high radial order.
Figure courtesy of J. Christensen-Dalsgaard.

As already stated, there are 2l+1 modes for each multiplet of degree l. Moreover, in

the case of a spherically symmetric star, their frequencies will be the same. However,

this frequency degeneracy is lifted by departures from spherical symmetry, of which

the most notorious physical cause is rotation. Rotation introduces a dependence of the

mode frequencies on m, with prograde (retrograde) modes having frequencies slightly

higher (lower) than the axisymmetric mode in the observer’s frame of reference. For
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1.3 Basic properties of oscillation modes

the radial modes one simply cannot see this rotational signature.

When the angular velocity of the star, Ω, is small, as it is expected for most solar-

like pulsators, the effect of rotation can be treated following a perturbative analysis.

In the case of rigid-body rotation (i.e., Ω = Ω(r)), the frequency ωnlm of a mode, as

observed in an inertial frame, can be expressed to a first order of approximation as

(Ledoux 1951):

ωnlm = ωnl0 +m〈Ω〉nl (1− Cnl) , (1.22)

where 〈Ω〉nl is an average of Ω over the stellar interior that depends on the properties of

the eigenfunction in the non-rotating star. The kinematic splitting m〈Ω〉nl is corrected

for the effect of the Coriolis force through the dimensionless Ledoux constant, Cnl.

For high-order acoustic modes Cnl�1, and the rotational splitting is thus dominated

by advection and given by the average angular velocity. With access only to low-

degree acoustic modes, limited information can be achieved on the profile of rotation

throughout the star. In that instance one would, however, still expect to obtain a

measure of the average internal angular velocity. Finally, for high-order g modes Cnl'
1/[l(l + 1)].

To a second order of approximation, centrifugal effects that disrupt the equilibrium

structure of the star are taken into account through an additional frequency perturba-

tion that is independent of the sign of m. This perturbation scales as the ratio of the

centrifugal to the gravitational forces at the stellar surface. Although negligible in the

Sun, these effects may be significant for faster solar-like rotators. Ballot (2010) alerts

to the need of considering second-order effects and, based on the work of Saio (1981),

presents an alternative description to that given in Eq. (1.22). Rotation is not the

only physical cause behind a departure from spherical symmetry. Other agents, such

as large-scale magnetic fields, may introduce additional corrections to the oscillation

frequencies.

A way of measuring the inclination angle, i, between the direction of the rotation

axis of a solar-like pulsator and the line of sight, is provided by asteroseismology. A

knowledge of i is not only important for obtaining improved stellar parameters, but

also for determining the true masses of extrasolar planets that have been detected from

periodic Doppler shifts seen in the spectra of their host stars. Assuming energy equipar-

tition between multiplet components with different azimuthal order, the dependence of
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

mode power on m is given by (Gizon & Solanki 2003):

Elm(i) =
(l − |m|)!
(l + |m|)!

[
P
|m|
l (cos i)

]2
. (1.23)

Handberg & Campante (2011) present explicit expressions for the computation of Elm(i)

with l ranging from 0 to 4. Sensitivity to multiplet components with different m is

essentially a geometrical effect, mainly linked to the limb-darkening function. However,

for velocity observations, the rotational shift of the spectral lines across the stellar

disk may induce a departure from the description adopted above (Brookes et al. 1978;

Christensen-Dalsgaard 1989; Broomhall et al. 2009). I will mention this point again in

Sect. 2.2.3.1.

According to Eq. (1.23), when the rotation axis points toward the observer (i.e.,

i=0◦), only the axisymmetric mode is visible and no inference can thus be made of the

rotation. In the case of the Sun, on the other hand, whose rotation axis is approximately

in the plane of the sky (i.e., i≈ 90◦), whole-disk observations are essentially sensible

only to modes with even |l − m|. Figure 1.7 displays the limit power spectra (for

a definition see Sect. 1.4.1) of dipole and quadrupole multiplets as a function of the

inclination i.

1.4 Stochastic excitation of oscillations

Intrinsically stable oscillations, such as the ones present in stars on the cool side of the

Cepheid instability strip, of which the Sun is an example, are thought to be stochasti-

cally excited by the vigorous near-surface convection (e.g., Goldreich & Keeley 1977).

In these stars, the turbulent convective motion near the surface reaches speeds close to

the speed of sound, and consequently acts as an efficient source of acoustic radiation

that will excite the normal modes of the star. Houdek (2006) provides a recent review

of the process of stochastic excitation in solar-like pulsators.

1.4.1 Power spectrum of a solar-like oscillator

Understanding the characteristics of the power spectrum of a solar-like oscillator is

fundamental in order to extract information on the physics of the modes. Batchelor

(1953) treated the general problem of the stochastic driving of a damped oscillator.
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1.4 Stochastic excitation of oscillations

Figure 1.7: Power spectra of dipole and quadrupole multiplets as a function of
the inclination i - Limit power spectra, with no background noise added, are displayed
in the left-hand panels for a dipole (i.e., l=1) multiplet and in the right-hand panels for a
quadrupole (i.e., l=2) multiplet. Mode linewidths were assigned solar values (Γ�≈1 µHz;
for a definition see Sect. 1.4.3) and the angular velocity is six times solar (where Ω�/2π≈
0.5 µHz). From Gizon & Solanki (2003).

Such a system can be described by

d2

dt2
y(t) + 2η

d
dt
y(t) + ω2

0 y(t) = f(t) , (1.24)

where y(t) is the amplitude of the oscillator, η is the linear damping rate, ω0 is the

frequency of the undamped oscillator, and f(t) is a random forcing function. By intro-

ducing the Fourier transforms of y and f as

Y (ω) =
∫
y(t) eiωtdt , F (ω) =

∫
f(t) eiωtdt , (1.25)

19



1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

the Fourier transform of Eq. (1.24) is then expressed as

− ω2 Y (ω)− i 2ηω Y (ω) + ω2
0 Y (ω) = F (ω). (1.26)

When a finite realization of the process described by y(t) is observed for a given

period of time, long enough so as to fully resolve the resonance, an estimate of the

power spectrum (see Fig. 1.8) is then given by

P (ω) = |Y (ω)|2 =
|F (ω)|2

(ω2
0 − ω2)2 + 4 η2ω2

. (1.27)

The power spectrum of the random forcing function, |F (ω)|2, is uncorrelated at (an-

gular) frequency separations of 2π/Tobs, with Tobs being the total observational span.

Furthermore, at a fixed frequency, the spectra of different realizations take values that

obey a χ2 distribution with 2 degrees of freedom1 (or χ2
2). Woodard (1984) showed

that solar oscillation data are consistent with this distribution.

In the limit of taking the ensemble average of an infinite number of realizations,

and further considering that the damping rate is generally very small compared to the

frequency of oscillation, one obtains near the resonance (i.e., for |ω − ω0| � ω0) the

following expression for the expectation value of the power spectrum (also called limit

spectrum; see Fig. 1.8):

〈P (ω)〉 ' 1
4ω2

0

〈Pf (ω)〉
(ω − ω0)2 + η2

. (1.28)

The average power spectrum of the random forcing function, 〈Pf (ω)〉, is expected to

be a slowly-varying function of frequency. The result will thus be a Lorentzian profile,

characterized by the central frequency ω0 and a width determined by the linear damping

rate η.

However, the fact that the dominant contributions to the driving of the oscillations

are restricted to a region of small radial extent, will lead to asymmetries in the mode

profiles (e.g., Duvall et al. 1993; Abrams & Kumar 1996). These asymmetries are

determined by the relative location of the region responsible for the driving with respect

to the resonant cavity. The detection of these asymmetries in the case of the Sun

made it possible to estimate the location of the dominant source of mode excitation

(e.g., Chaplin & Appourchaux 1999). Moreover, the sign of the asymmetry depends
1The statistics of the power spectrum of a pure noise signal is derived in Sect. 2.1.5.
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1.4 Stochastic excitation of oscillations

upon the observable, an aspect that is related to the different correlation, found in

velocity and intensity measurements, between the background stellar noise and the

convective excitation of the oscillations (e.g., Nigam et al. 1998). A simple expression

for describing an asymmetrical mode profile is given by Nigam & Kosovichev (1998).

In principle, similar detections are possible for other stars through the analysis of long

and continuous observations with overall high signal-to-noise ratio (SNR).

Very often, one implicitly assumes that the background stellar noise and the convec-

tive excitation of the oscillations are statistically uncorrelated stationary processes. In

that case, the overall power spectrum is simply given by the sum of the separate power

spectra. This is usually a fairly good approximation for solar-like oscillations, mean-

ing that we end up neglecting any asymmetries in the mode profiles. If, however, one

assumes that the processes are correlated but that their correlation is stationary, then

we should take into account profile asymmetry. Such correlations have been studied by

Severino et al. (2001) in the helioseismic context.

1.4.2 Mode excitation

I start by introducing two useful global properties of a mode, namely, its normalized

inertia E and its mode mass Mmode:

E =
Mmode

M
≡
∫
V ρ|δr|

2 dV
M |δr|2ph

, (1.29)

where the integration is over the volume V of the star, and |δr|2ph is the squared norm

of the displacement vector at the photosphere. Based on the definition of mode inertia,

one would thus expect modes trapped in the deep stellar interior to have large values

of E. Mode inertia relates the photospheric rms velocity, Vrms, to the kinetic energy of

the mode, Ekin, through:

Ekin =
1
2
MmodeV

2
rms =

1
2
MEV 2

rms . (1.30)

Based on a detailed description of the stochastic mechanism of mode excitation,

Chaplin et al. (2005) obtained the following result for the expected mode amplitude1:

V 2
rms =

1
ηE

P̃

E
≈ F(ω)

E
, (1.31)

1This expression predicts the theoretical mode amplitude. In order to predict the observed quantity,

one should multiply this expression by a factor Kθ,φ accounting for the spatial filter of real observations.
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.8: Power spectrum of a solar-like oscillator - Panels (a) and (b) display
two realizations of the same limit spectrum (shown as a dotted curve). Both power spectra
appear as an erratic function concealing the subjacent Lorentzian profile. Panel (c) displays
a realization of the same limit spectrum, although with a resolution twenty times higher.
Increasing the total observational span, and hence the resolution, did nothing to reduce the
erratic behavior of the power spectrum. This panel is scaled differently to the remaining
panels, with arrows marking the maximum value of the limit spectrum. Panel (d) displays
the ensemble average of a large number of realizations with the same resolution as in (c).
From Anderson et al. (1990).

where P̃ is a measure of the acoustic energy input. Both terms P̃ and ηE depend

on the properties of the eigenfunction in the near-surface region of the star and are

thus predominantly functions of frequency, which justifies the second equality in the

last equation. It follows from Eq. (1.31) that, for a given frequency, mode amplitude

essentially scales as E−1/2; also, mode energy (cf. Eq. 1.30) is predominantly a function

of frequency.

The stochastic process gives rise to the excitation of all modes in a substantial range

of frequencies, with an amplitude modulation that reflects the slow frequency depen-
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1.4 Stochastic excitation of oscillations

dence of the energy input and damping rate. The properties of the mode eigenfunctions

in the near-surface region of vigorous convection also play an important role in deter-

mining the frequency dependence of the mode amplitudes. Low-frequency modes tend

to be evanescent near the surface, hence leading to inefficient excitation and small mode

amplitudes. High-frequency modes, on the other hand, see their amplitudes reduced

due to a decrease of the convective energy at the timescale of the oscillations, com-

bined with an increase in the damping rate. The driving is ultimately most efficient for

those modes whose periods match the relevant timescales of near-surface convection,

from 5 to 10 minutes in the solar case. The frequency of maximum amplitude, νmax, is

supposed to scale with the acoustic cut-off frequency (Brown et al. 1991; Kjeldsen &

Bedding 1995; Bedding & Kjeldsen 2003; Chaplin et al. 2008b; Belkacem et al. 2011),

which when determined for an isothermal stellar atmosphere gives a scaling relation in

terms of mass, radius, and effective temperature of (cf. Eqs. 1.1 and 1.18)

νmax ∝M R−2 T
−1/2
eff . (1.32)

The overall result is a characteristic amplitude distribution with frequency (very

often modulated by a bell-shaped envelope), which constitutes a signature of the pres-

ence of solar-like oscillations (see Fig. 1.9). Our ability to theoretically predict the

amplitudes of stochastically-excited modes, combined with a complete set of observed

modes over a broad frequency range, substantially simplify the process of mode iden-

tification and hence the comparison with stellar models, ultimately exponentiating the

asteroseismic diagnostic potential of solar-like oscillations. This comes in great contrast

to heat-engine excitation, for which the mechanism determining the final amplitudes of

the modes is not well understood.

Christensen-Dalsgaard & Frandsen (1983) provided rough estimates of the oscilla-

tion amplitudes in main-sequence stars and cool giants from model calculations. Based

on those results, Kjeldsen & Bedding (1995) found that mode amplitudes given in terms

of surface velocities scale approximately as

Vrms ∝
(
L

M

)s
, (1.33)

with s = 1. They further argued that the oscillation amplitudes, Arms, observed in

photometry at a wavelength λ, are related to the velocity amplitudes according to

Arms = (dL/L)λ ∝
Vrms

λT reff

, (1.34)
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or, in terms of bolometric amplitudes,

Abol
rms ∝

Vrms

T r−1
eff

. (1.35)

The exponent s has since been revised both theoretically (Houdek et al. 1999; Houdek

2006; Samadi et al. 2007), as well as observationally using red-giant stars (Gilliland

2008; Dziembowski & Soszyński 2010; Mosser et al. 2010; Stello et al. 2010), main-

sequence stars (Verner et al. 2011b), and an ensemble of main-sequence and red-giant

stars (Baudin et al. 2011). As a result, its value is now seen to reside roughly within the

range from 0.7 to 1.5. The value of r is chosen to be either r=1.5 (assuming adiabatic

oscillations) or r=2 (following a fit to observational data in Kjeldsen & Bedding 1995).

Accordingly, amplitudes are predicted to increase with increasing luminosity along

the main sequence and relatively large amplitudes are expected for red giants. Such

predictions are now being increasingly tested against observations. Reasonable agree-

ment is apparently found between predicted and observed amplitudes for stars cooler

or as hot as the Sun, while for hotter stars predictions considerably exceed the observed

values. As an example of the type of discrepancy just mentioned, early CoRoT results,

based on the analysis of the light curves of three main-sequence F stars fairly hotter

than the Sun, showed that the oscillation amplitudes of those solar-like pulsators are

about 25% below the theoretical predictions (Michel et al. 2008).

Recently, Kjeldsen & Bedding (2011) argued that amplitudes of oscillations in ve-

locity should scale in proportion to velocity fluctuations due to granulation, since the

physical motion of convective cells is what drives the oscillations. Therefore, they

proposed a revised scaling relation for the velocities:

Vrms ∝
Lτ0.5

M1.5 T 2.25
eff

, (1.36)

where τ is the e-folding mode lifetime. Compared to Eq. (1.33), this revised scaling

relation now incorporates a strong temperature dependence and also a weak dependence

on mode lifetime. Stars with shorter mode lifetimes will show lower amplitudes, all

other parameters remaining unaltered. Note that simple scaling relations exist in the

literature for τ (Chaplin et al. 2009; Baudin et al. 2011; Appourchaux et al. 2012). A

revised scaling relation for (narrowband) intensity amplitudes is then given by

Arms ∝
Lτ0.5

λM1.5 T 2.25+r
eff

, (1.37)

24



1.4 Stochastic excitation of oscillations

Figure 1.9: p-mode amplitude spectrum of the Sun - The spectrum is based on
whole-disk observations of the solar irradiance using the blue channel of the VIRGO/SPM
instrument on board the SOHO spacecraft. The observations have been smoothed and
rescaled to show the spectrum corresponding to 30 days. Adapted from Bedding & Kjeldsen
(2003).

or, in terms of bolometric amplitudes,

Abol
rms ∝

Lτ0.5

M1.5 T 1.25+r
eff

. (1.38)

This revised scaling relation can now be extensively tested with observations from

CoRoT and Kepler (e.g., Campante et al. 2011).

1.4.3 Mode height and mode linewidth

It is not the integrated power V 2
rms (or A2

rms) that is observed directly in the power

spectrum, but instead the power spectral density. If the total observational span is

long enough in order to resolve a mode peak in the power spectrum (i.e., Tobs� 2τ ,

where the mode lifetime is given by τ=1/η), then the mode height (or maximum power

spectral density) is given by (Chaplin et al. 2003, 2005):

H ≈ 2V 2
rms

η
=

2V 2
rms

πΓ
, (1.39)

where Γ=(πτ)−1 is the full width at half maximum of the mode peak, being commonly

called the mode linewidth1. In this regime, H is independent of E, since both V 2
rms and

1The dominant modes in the Sun have linewidths of 1–2 µHz and hence lifetimes of 2–4 days (e.g.,

Chaplin et al. 1997b).
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η scale as E−1 at fixed frequency. Conversely, when Tobs� 2τ the mode peak is not

resolved, and power is essentially confined in one bin of the power spectrum, meaning

that

H ∼ V 2
rmsTobs , (1.40)

and H is thus proportional to E−1. A proper description of H, covering these two

extreme regimes as well as the intermediate regime, is given by (Fletcher et al. 2006;

Chaplin et al. 2008b)

H =
2V 2

rmsTobs

πΓTobs + 2
. (1.41)

1.4.4 Statistical properties of the oscillators

Let us bear in mind Eq. (1.24) describing a damped linear oscillator forced by a random

function. Since a very large number of convective elements is responsible for exciting the

oscillations, it is reasonable to assume that f(t) is a white-noise process with a Gaussian

distribution. Furthermore, the energy of an oscillator in stochastic equilibrium can

be interpreted in terms of the distance from the starting point of a two-dimensional

random walk with a variable step size in the phase plane. The forcing function f(t)

being random means that each step is independent of the previous one. Once a large

number of steps has been taken, the displacement y(t) and velocity dy(t)/dt will both

be normally distributed. Therefore, the total energy of the oscillator, given by the sum

of its kinetic energy, [dy(t)/dt]2, and potential energy, ω2
0 y

2(t), follows by definition a

χ2
2 distribution, i.e., a Boltzmann distribution:

p(E) =
1
〈E〉

exp
(
− E

〈E〉

)
, (1.42)

where 〈E〉 is the mean energy. This relation will only hold if the mode energy can be

measured over time intervals much smaller than the damping time (Kumar et al. 1988).

The observed solar oscillations amply satisfy this relation (e.g., Chaplin et al. 1997a).

In order to obtain the amplitude distribution, one takes into account that p(E)dE =

p(A)dA, and that the energy E is proportional to the square of the amplitude, A2. As

a result, the amplitude distribution turns out to be a Rayleigh-type distribution:

p(A) =
2A
〈A2〉

exp
(
− A2

〈A2〉

)
, (1.43)
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where 〈A2〉 is the mean-square amplitude. Interestingly, the mean 〈A〉 and standard

deviation σ(A) of this distribution obey the following relation:

σ(A) =
(

4
π
− 1
)1/2

〈A〉 ≈ 0.52 〈A〉 , (1.44)

which holds true as long as the oscillator is in stochastic equilibrium.

Therefore, one expects stars whose oscillations are stochastically excited to verify

σ(A) ≈ 0.52〈A〉. Christensen-Dalsgaard et al. (2001) noticed that observed amplitudes

of semi-regular variables on the asymptotic giant branch approximately followed this

relation. They argued that such variability might be due to stochastically-excited

oscillations with mode lifetimes ranging from years to decades, a result later confirmed

observationally by Bedding (2003). This result, first obtained from amateur astronomer

data from the American Association of Variable Star Observers (AAVSO), was later

also confirmed by Kiss & Bedding (2003) using data from the OGLE-II microlensing

project. Furthermore, the regime σ(A) < 0.52〈A〉 is expected to hold for oscillations

excited by thermal overstability. Most of the oscillations excited by the κ mechanism,

such as in subdwarf B stars (Pereira & Lopes 2005), are expected to be found in this

regime. Finally, the regime σ(A) > 0.52〈A〉 corresponds to stochastic oscillations that

are not in stochastic equilibrium, a type of oscillatory behavior yet to be observed.

Based on the ratio σ(A)/〈A〉, a simple diagnostic method has been established

by Pereira & Lopes (2005) that probes the excitation mechanism of stellar pulsations

through the analysis of the temporal variation of the amplitude of oscillation modes

(see Fig. 1.10). Numerical simulations and the application to the γ Dor star HD 22702

served as a test to this method (Pereira et al. 2007). The same method has also been

applied by Campante et al. (2010a) to the CoRoT hybrid γ Dor/δ Sct star HD 49434

in order to investigate the mechanism responsible for the excitation of the observed

intermediate-order g modes (see Sect. 3.2.3).

Recent detection claims, based on CoRoT observations, of solar-like oscillations in

the massive star V1449 Aql (Belkacem et al. 2009), previously known to be a β Cep

pulsator, constituted the first plausible evidence of simultaneous classical and solar-like

oscillations, thus providing additional modeling constraints if we bear in mind that these

modes probe different layers of the star. Kepler observations of similar stars, however,

have so far failed to confirm stochastically-excited oscillations (Balona et al. 2011).

This is clearly a domain that may benefit from the application of the aforementioned
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Figure 1.10: Probing the excitation mechanism of stellar pulsations - Probability
density function of the statistic σ(A)/〈A〉 computed by means of Monte Carlo simulations.
From left to right, the curves correspond to samples of 40, 200 and 1000 amplitude mea-
surements of a stochastic mode. These measurements come from contiguous time series
considerably shorter than the damping time of the mode. The vertical dashed line cor-
responds to σ(A)/〈A〉= 0.52. As the number of measurements increases, the distribution
gradually acquires a Gaussian profile with the location of its peak converging to 0.52.
Moreover, the width of the distribution is substantially reduced.

diagnostic method. This has certainly been the case of the very first detection of solar-

like oscillations in a δ Sct star by Antoci et al. (2011), where its application proved

decisive to set the claims on firm ground. Notice that solar-like oscillations in δ Sct

stars had already been predicted by theory (Houdek et al. 1999; Samadi et al. 2002).

The scientific relevance and implications of this groundbreaking work together with

my substantial contribution to its completion, to be specific, in testing the stochastic

origin of the oscillatory signal, led me to place the resulting article as a supplement in

Appendix A.
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1.4 Stochastic excitation of oscillations

1.4.5 Near-surface effects on computed oscillation frequencies

The effects of near-surface convection on the computation of oscillation frequencies

are a very delicate matter. Computation of oscillation frequencies of stellar models

usually assumes adiabaticity, a valid approximation in much of the stellar interior, viz.,

in regions where the thermal timescale is considerably longer than the period of the

oscillations. This is certainly not the case in the near-surface region. Moreover, the

dynamical effects of convection are usually neglected. This improper modeling of the

near-surface layers gives rise to an offset between observed and computed oscillation

frequencies. Grigahcène et al. (2011) address the problem of frequency precision in

non-adiabatic models using a time-dependent treatment of convection.

Near-surface effects are essentially independent of l for low-degree modes. Moreover,

these effects are predominantly functions of frequency, rapidly increasing with ω/ωc

(e.g., Christensen-Dalsgaard & Gough 1980), and thus of vital importance if we are to

correctly interpret the high-order acoustic modes. Kjeldsen et al. (2008b) devised an

empirical correction for the near-surface offset in the form of a power law:

δ(surf)ν = a (ν/ν0)b , (1.45)

where ν0 is a suitably chosen reference frequency, and the amplitude a and exponent

b are obtained from a fit to solar frequencies of radial modes. They extended this

correction to the stellar case with reasonable success by adopting the solar value of

the exponent b and using the frequencies of a reference stellar model. Nevertheless,

this correction is calibrated with respect to the Sun and thus needs to be thoroughly

tested to assess its validity when applied to other solar-like oscillators. Brandão et al.

(2011) show that, after applying this correction to the case of β Hyi, the observed

modes are well reproduced, including those that have mixed-mode character. On the

other hand, application of this same correction to the case of Procyon has led to mixed

success (Doğan et al. 2010). One hopes that Kepler observations of a broad sample

of solar-like pulsators will yield insight into the dependence of these effects on stellar

parameters.

In order to account for the minor dependence of the near-surface effects on mode

inertia, we may want to rewrite Eq. (1.45) as

δ(surf)νnl = Q−1
nl a (νnl/ν0)b , (1.46)
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

where the inertia ratio Qnl is given by

Qnl =
Enl

E0(νnl)
, (1.47)

that is to say, the ratio of mode inertia to the interpolated inertia of radial modes. The

power-law correction is based on a fit to the radial modes and, relative to these, the

effect on the non-radial modes is reduced by a factor proportional to the mode inertia.

Qnl also accounts for the presence of mixed modes, for which the near-surface effect is

smaller due to the higher inertia ratio Qnl.

1.5 Asteroseismic inference

1.5.1 Asymptotic signatures

1.5.1.1 Asymptotic relation for p modes

The observed modes of solar-like oscillations are typically high-order acoustic modes.

If interaction with a g mode can be neglected, linear, adiabatic, high-order acoustic

modes, in a spherically symmetric star, satisfy an asymptotic relation for the frequencies

(Vandakurov 1967; Tassoul 1980):

νnl '
(
n+

l

2
+ ε

)
∆ν0 −

{
l(l + 1)
4π2 ∆ν0

[
c(R)
R
−
∫ R

0

dc
dr

dr
r

]
− δ
}

∆ν0
2

νnl
, (1.48)

where

∆ν0 =
(

2
∫ R

0

dr
c

)−1

(1.49)

is the inverse of the sound-travel time across the stellar diameter; additionally, the term

ε= ε(ν) is determined by the reflection properties of the surface layers, as is the small

correction term δ.

To leading order, Eq. (1.48) predicts that modes should occur in groups correspond-

ing to degree of the same parity (i.e., either even or odd degree) such that n+ l/2 are

the same, and being further uniformly spaced with a separation given by ∆ν0. This

degeneracy is lifted by considering the second-order term in Eq. (1.48). The spectrum

is then characterized both by the large frequency separation

∆νnl = νn+1 l − νnl ≈ ∆ν0 , (1.50)
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1.5 Asteroseismic inference

a quantity depending both on frequency and on mode degree l, and by the small

frequency separation

δνnl = νnl − νn−1 l+2 ≈ −(4l + 6)
∆ν0

4π2 νnl

∫ R

0

dc
dr

dr
r
, (1.51)

also a frequency- and degree-dependent quantity (I have here neglected the term in

the surface sound speed appearing in Eq. 1.48). It should be noted that the small

frequency separation may become a negative quantity during stellar evolution. This

apparent violation of Eq. (1.51) is associated with the presence of a convective helium-

rich core (Soriano & Vauclair 2008).

Both the large and the small frequency separations are shown in Fig. 1.11 in the

case of the acoustic amplitude spectrum of the Sun. The quasi-regularity of the spec-

trum of high-order p modes, along with the characteristic amplitude distribution with

frequency discussed in Sect. 1.4.2, constitute the main signatures of the presence of

solar-like oscillations. The large and small frequency separations are extremely valu-

able diagnostic tools for asteroseismic studies of solar-like oscillators. In fact, these two

quantities can be measured with considerable precision, even in the case of low-SNR

observations where a determination of individual oscillation frequencies is hindered.

Moreover, it may be also convenient to consider small separations that take into

account modes with adjacent degree:

δ(1)νnl = νnl −
1
2

(νn−1 l+1 + νn l+1) ≈ −(2l + 2)
∆ν0

4π2 νnl

∫ R

0

dc
dr

dr
r
, (1.52)

viz., the amount by which modes with degree l are offset from the midpoint between

the l + 1 modes on either side.

A recurrent way of visualizing the asymptotic properties of the acoustic spectrum is

to build an échelle diagram (e.g., Grec et al. 1983), for which one starts by expressing

the frequencies as

νnl = ν0 + k〈∆ν〉+ ν̃nl , (1.53)

where ν0 is a reference frequency, 〈∆ν〉 is a suitable average of the large frequency

separation ∆νnl, and k is an integer such that ν̃nl takes a value between 0 and 〈∆ν〉.
Finally, the diagram is built by plotting ν̃nl on the abscissa and ν0 + k〈∆ν〉 on the

ordinate, the graphical equivalent to slicing the spectrum into segments of length 〈∆ν〉
and stacking them one on top of the other. Figure 1.12 displays a scaled échelle diagram
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.11: Close-up of the p-mode amplitude spectrum of the Sun - This is
a close-up of the p-mode spectrum displayed in Fig. 1.9. Mode peaks are tagged with
the corresponding (n, l) values, which were determined by comparison with theoretical
models. The large and small frequency separations are indicated with a slightly different
nomenclature than the one used in the text, which should, however, still be clear. From
Bedding & Kjeldsen (2003).

(Bedding & Kjeldsen 2010) where the p-mode frequencies of three main-sequence stars

are simultaneously plotted. If the frequencies of these stars were to strictly obey the

asymptotic relation in Eq. (1.48), then they would exhibit essentially vertical ridges in

the échelle diagram. However, departures from regularity are clearly present: variations

in the large separation with frequency are seen to introduce a curvature in the ridges,

while variations in the small separation with frequency appear as a convergence or

divergence of the relevant ridges.

The small frequency separation is mostly sensitive to conditions in the stellar core,

where the eigenfunctions of modes of similar frequency but of different degree mainly

differ. As stellar evolution takes its course, hydrogen is burned into helium in the core

leading to an increase of the mean molecular weight. Bearing in mind Eq. (1.14) for the

sound speed in an ideal gas, and taking into consideration that the central temperature

will not vary significantly during the phase of hydrogen burning, the sound speed in

the core will thus decrease as the star becomes more evolved, such decrease being more

intense at the center and becoming more pronounced with increasing age. Therefore,
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1.5 Asteroseismic inference

Figure 1.12: Scaled échelle diagram - Three main-sequence stars are simultaneously
compared: the power spectrum of α Cen A is given in grayscale, filled symbols represent
scaled solar frequencies, and open symbols represent scaled frequencies for α Cen B. Scaling
factors for the frequencies were computed based on a homology relation (cf. Eq. 1.54) and
fine-tuned so as to match the slopes of the ridges for the three stars (making them vertical),
which means matching ∆ν0. Symbol shapes indicate mode degree: l = 0 (circles), l = 1
(triangles), l=2 (squares), and l=3 (diamonds). From Bedding & Kjeldsen (2010).

the resulting positive sound-speed gradient dc/dr in the core causes a gradual reduction

of δνnl and δ(1)νnl with increasing stellar age (cf. Eqs. 1.51 and 1.52, respectively). In

conclusion, the small frequency separation can be seen as a diagnostic tool of the

evolutionary stage of a (main-sequence) star.

On the other hand, the large frequency separation provides a more global measure
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

of the properties of a star, essentially scaling as t−1
dyn (cf. Eq. 1.1):

∆ν0 ∝
(
M

R3

)1/2

∝
√
ρ . (1.54)

Besides providing a measure of the mean stellar density, it may be taken as a measure

of stellar mass for stars residing on the main sequence. Based on theoretical models,

White et al. (2011b) suggested that the scaling relation of ∆ν0 with density may be

improved by including a function of Teff .

The preceding considerations suggest presenting the large and small frequency sep-

arations in a two-dimensional diagram, which can be thought of as an asteroseismic

H-R diagram, known as the C-D diagram (e.g., Christensen-Dalsgaard 1984, 1988). An

example of such a diagram is displayed in Fig. 1.13. Assuming that the remaining

stellar parameters (e.g., the chemical composition) are known, the location of a star in

this diagram would then determine its mass and age. Monteiro et al. (2002) present an

interesting analysis of the uncertainties associated with the use of this diagram due to

the sensitivity to several model parameters.

For subgiants as well as for red giants, however, the small separation is approx-

imately a fixed fraction of the large separation, regardless of mass or evolutionary

state (Bedding et al. 2010a; White et al. 2011a). As a consequence, the distribution

of evolved stars in the C-D diagram becomes highly degenerate as evolutionary stellar

tracks converge. Based on models extending from the zero-age main sequence to the

tip of the red-giant branch, White et al. (2011b) revived the diagnostic potential of an

alternative asteroseismic diagram relating ε (cf. Eq. 1.48) to the large separation (see

Fig. 1.14 for an example). They found that evolutionary tracks in this so-called ε dia-

gram (originally introduced by Christensen-Dalsgaard 1984) are more sensitive to the

mass and age of evolved stars than in the C-D diagram. They have also shown that ε is

mostly determined by Teff and that it could thus be useful for addressing the problem

of mode identification in F stars (see also Sect. 2.2.3.2), as previously suggested by

Bedding & Kjeldsen (2010).

Finally, the small frequency separation still retains a residual sensitivity to the

properties of the stellar envelope. Roxburgh & Vorontsov (2003) showed that ratios

such as

r02 =
νn0 − νn−1 2

νn1 − νn−1 1
, (1.55)
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1.5 Asteroseismic inference

Figure 1.13: Example of a C-D diagram - Evolutionary sequences of stars with
0.9, 1.0, 1.1, and 1.2 M� are displayed, together with curves of constant central hydro-
gen abundance, Xc. Stellar age increases as one moves downward along an evolutionary
sequence of given mass. Sequences corresponding to models with an initial hydrogen abun-
dance X0 = 0.75 appear as solid curves, whereas sequences corresponding to models with
X0 =0.693 are displayed as dotted curves. Adapted from Monteiro et al. (2002).

and

r10 =
−1

8(νn−1 1 − 4νn0 + 6νn1 − 4νn+1 0 + νn+1 1)
νn+1 0 − νn0

, (1.56)

between small and large frequency separations, are largely independent of the surface

layers and provide a reliable measure of the core properties.

1.5.1.2 Asymptotic relation for g modes

High-order, low-degree g modes obey the following first-order asymptotic expression

for the periods (Vandakurov 1967; Smeyers 1968; Tassoul 1980):

Πnl =
1
νnl
' Π0√

l(l + 1)
(n+ εg) , (1.57)
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.14: Example of an ε diagram - ε diagram with model tracks for near-solar
metallicity (Z0 = 0.017). Tracks increase in mass from 0.7 to 2.0 M� (green to magenta
lines) in steps of 0.1 M�. The sections of the evolutionary tracks in which the models are
hotter than the approximate cool edge of the classical instability strip are shown in gray.
Stars shown, as labeled, were observed by either CoRoT (orange triangles), Kepler (red
circles) or from the ground (purple diamonds). Gray circles are Kepler red giants (Huber
et al. 2010). The Sun is marked by its usual symbol. From White et al. (2011b).
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where

Π0 = 2π2

(∫
N

r
dr
)−1

; (1.58)

the phase term εg depends on the details of the boundaries of the g-mode trapping

region and the integral is computed over that same region. The periods are now nearly

uniformly spaced, and not the frequencies, as was the case for p modes (cf. Eq. 1.48).

Furthermore, the period spacings depend on degree l. Departures from the simple

asymptotic relation given in Eq. (1.57) are used as a means of diagnosing the stratifica-

tion inside stars (e.g., inside white dwarfs), since the magnitude of these departures is

very sensitive to strong abundance gradients and their effect on the buoyancy frequency.

1.5.2 Effects of sharp features

Oscillation frequencies contain a greater deal of information besides what is suggested

by the simple asymptotic description. In fact, sharp features (i.e., features varying more

rapidly than the scale of the eigenfunction) in the internal structure of a star are known

to give rise to oscillatory signals in observable seismic parameters (e.g., Monteiro et al.

2000; Ballot et al. 2004; Basu et al. 2004; Verner et al. 2006; Houdek & Gough 2007).

This oscillatory behavior is a function of frequency and arises from the varying phase

of the oscillation at the location of the sharp feature, ultimately causing departures

from the asymptotic description. In particular, these oscillatory signals can be found

in the frequencies themselves, in the large frequency separation, and in higher-order

differences. The second difference, defined as

∆2νnl = νn−1 l − 2 νnl + νn+1 l , (1.59)

is the most widely exploited parameter. Other diagnostics from which to extract such

signatures are frequency differences that make use of the l= 0 and l= 1 modes (Rox-

burgh 2009b).

The modulation of the seismic parameters with frequency may be written in the

form

A(ω) cos[2(ω τd + φ)] , (1.60)

where A(ω) is an amplitude, τd is the acoustic depth of the feature, and φ is a surface

phase. The frequency dependence of the amplitude A(ω) is determined by the physical
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

properties of the feature. The acoustic depth τd is defined as

τd =
∫ R

rd

dr
c
, (1.61)

where rd is the acoustic radius of the feature.

These sharp features are associated with abrupt variations of the sound speed and

thus are also called acoustic glitches. The two main sources behind an abrupt variation

of the sound speed are the border of a convection zone and the ionization of a domi-

nant element. The former source is related to the sharp transition of the temperature

gradient from being radiative to becoming adiabatic, which causes a discontinuity in

the second derivative of the sound speed. Moreover, convective overshoot may produce

a discontinuity in the temperature gradient with a consequent discontinuity in the first

derivative of the sound speed, ultimately leading to a stronger oscillatory signal. De-

termination of the lower boundary of a convective envelope is a very important matter,

since this region is believed to play a key role in stellar dynamos. The latter source is

related to a rapid variation of the adiabatic exponent Γ1 (and hence of the local sound

speed) associated with the ionization of an abundant element, e.g., arising from the sec-

ond ionization of helium. Extraction of the helium signature allows tight constraints to

be placed on the helium abundance in stellar envelopes, otherwise not possible when

dealing with such cool stars (since ionization temperatures are too high to yield usable

photospheric lines for spectroscopy in these stars).

The effects of sharp features are detectable from the analysis of the frequencies of

low-degree modes. Therefore, one expects to be able to conduct such analyses in the

stellar case once frequency precision is high enough. Monteiro et al. (2000) conducted a

seismic study that aimed at determining the characteristics of the convective envelopes

of low-mass stars, namely, measuring the acoustic depth of the base of the convection

zone and constraining the properties of an overshoot layer at the base of such an en-

velope. Using frequencies of low-degree modes (up to l = 2) they concluded that the

signal in the frequencies (see Fig. 1.15) could be measured if the precision in frequency

determination was 0.1 µHz or better. Ballot et al. (2004) conducted a detailed investi-

gation on the seismic extraction of the convective extent in solar-like stars, again using

low-degree data. Their analysis was mainly based on the use of the second difference

∆2νnl, after having asserted that this seismic parameter constitutes the best compro-

mise between enhancing the oscillatory signal while keeping the errors acceptably low.
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1.5 Asteroseismic inference

Figure 1.15: Oscillatory signal from the base of the convection zone - These
signals are present in the frequencies of zero-age main-sequence models of a 0.9-M� (top
panel) and a 1.1-M� (bottom panel) stars. Model frequencies are represented by circles:
open circles correspond to models incorporating overshoot and filled circles correspond to
models without overshoot. Dotted lines indicate the fit to the former groups of points,
whereas solid lines indicate the fit to the latter groups of points. The size of the overshoot
layer, `ov, is indicated in both panels in units of the pressure scale height, Hp. It can
be clearly seen that the amplitude of the signal reflects the presence or not of convective
overshoot. From Monteiro et al. (2000).
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

They concluded that an observational span of at least 150 days is necessary if we are

to reliably extract the signature of the base of the convection zone for a large sample

of solar-like stars. Very recently, Miglio et al. (2010) found evidence of the seismic

signature of a sharp transition in the internal structure of the CoRoT red-giant star

HR 7349. Through comparison with stellar models they were led to conclude that this

feature is associated with the helium second-ionization region. In another very recent

work, Mazumdar & Michel (2010) claim to have determined the acoustic depth of both

the base of the convection zone and the helium second-ionization region of HD 49933

with a precision of 10% by means of the second difference.

Finally, the sharp transition associated with the edge of a convective core – found in

solar-type stars that are slightly more massive than the Sun – also produces an effect on

the oscillation frequencies (e.g., Cunha & Metcalfe 2007). In the case of a main-sequence

solar-like oscillator harboring a convective core, its edge will be situated near the inner

turning point of low-degree p modes and, as a result, the signal will no longer be

periodic. Measurement of the frequency dependence of suitable frequency separations

of low-degree modes provides a diagnostic tool of both the presence and size of a

convective core (e.g., Cunha & Brandão 2011; Silva Aguirre et al. 2011a). Determining

the sizes of convective cores and the overshoot of the corresponding convective motions

can provide an accurate calibration of the ages of such stars (e.g., Mazumdar et al.

2006).

1.5.3 Mixed modes

I ended Sect. 1.3.3 by mentioning that modes with mixed p- and g-mode character

may occur in evolved stars. This comes as a result of the large magnitude attained

by the buoyancy frequency in the stellar core, which reaches frequency values relevant

for stochastic excitation. Hereafter, an illustration of the signatures of mixed modes

is provided, based on a model1 of the subgiant η Boo having a mass of 1.7 M� and

a heavy-element abundance of Z = 0.04 (di Mauro et al. 2003; Christensen-Dalsgaard

& Houdek 2010). Interestingly, η Boo is the first star other than the Sun for which

definite frequencies of solar-like oscillations have been identified (Kjeldsen et al. 1995);

1This is not the same model as considered in Fig. 1.4. The general properties of the characteristic

frequencies of both models are, however, very similar.
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these would be later confirmed by Kjeldsen et al. (2003) and Carrier et al. (2005) (see

Sect. 1.6.2 for a more detailed account).

In the course of its evolution along the subgiant branch, the star expands at roughly

constant luminosity and consequently its effective temperature drops. In addition, as

a result of this expansion, the eigenfrequencies tend to decrease (cf. Eq. 1.1). On the

other hand, the increasing central condensation leads to an increase of the buoyancy

frequency in the deep interior, which in turn tends to augment the frequencies of the g

modes. Panel (a) of Fig. 1.16 displays the evolution with age or, equivalently, decreasing

effective temperature, of the frequencies of selected radial (l = 0) and dipole (l = 1)

modes of the model of η Boo being considered. The frequencies of the purely acoustic

l = 0 modes are seen to decrease monotonically in accordance with Eq. (1.1). Also,

the frequencies of the predominantly acoustic l= 1 modes – with their values roughly

halfway between those of the radial modes on either side – follow the same general

behavior. However, also evident, is a branch of increasing frequency that corresponds to

a l=1 mode whose predominant character is that of a g mode. Where this mode meets

a predominantly acoustic mode, their frequencies undergo what is called an avoided

crossing (Osaki 1975; Aizenman et al. 1977), i.e., closely approaching without actually

crossing. At the point of closest approach these modes have a mixed character, with

considerable amplitudes both in the g- and p-mode trapping regions. The important

role of mixed modes as diagnostic tools resides here, namely, in the fact that their

sensitivity to the properties of stellar cores is greatly enhanced when compared to

purely acoustic modes.

The changing nature of the modes can also be traced by means of the behavior of

their normalized inertia E (cf. Eq. 1.29), as depicted in panel (b) of Fig. 1.16 for a couple

of l=1 modes undergoing an avoided crossing. When their character is predominantly

acoustic their inertia is similar to that of a neighboring (purely acoustic) radial mode.

As they approach the g-mode branch, however, their inertia modestly rises above what

would be expected for a purely acoustic mode. The two modes are seen to exchange

nature during the avoided crossing. Furthermore, at the point of closest approach (near

the vertical line) the two modes have essentially the same inertia.

Inspection of Fig. 1.4 tells us that the evanescent region is narrower for l=1 modes

than for l= 2 modes. Consequently, discrimination between g- and p-mode behavior

is effectively blended for the dipole modes, as suggested by the gradual nature of the
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.16: Evolution of mode properties in a model of η Boo - Panel (a) displays
the evolution of the frequencies of selected radial (dashed curves) and dipole (solid curves)
modes. Panel (b) depicts the evolution of the normalized inertia for a couple of l=1 modes
(solid curves) marked by triangles and squares in panel (a). The normalized inertia of
a neighboring radial mode is also depicted (dashed curve), seen to vary slowly with age.
The vertical line indicates the location of the specific model being considered and whose
oscillation frequencies are displayed in Fig. 1.17. From Christensen-Dalsgaard & Houdek
(2010).
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avoided crossings in panel (a) of Fig. 1.16. On the other hand, for modes with l > 1,

the evanescent region is broader. This gives rise to a better discrimination between the

two types of behavior by reducing the coupling between the g- and p-mode regions,

as well as to a decrease in the likelihood of finding a mode in a mixed state. Also,

this is accompanied by a plummeting increase of the mode inertia while approaching

a g-mode branch, which can become higher by several orders of magnitude than for a

purely acoustic mode.

An issue not yet addressed is whether or not such mixed modes are expected to be

excited to observable amplitudes. It follows from Eq. (1.31) that, for a given frequency,

the amplitudes of stochastically-excited modes will scale inversely to the mode inertia,

more specifically, as E−1/2. Based on this and the above considerations, one may predict

that l=1 mixed modes are likely to be excited to observable amplitudes, whereas this

is less likely to happen for mixed modes of higher degree.

The échelle diagram in Fig. 1.17 shows computed and observed frequencies for η Boo.

The jagged appearance of the l= 1 ridge – an obvious departure from the asymptotic

description – is a trademark of the presence of an avoided crossing and hence of the

evolved nature of a star. This is also known as mode bumping, meaning that mode

frequencies are shifted from their regular spacing. These same features have also been

seen in the cases of ground-based observations of β Hyi (Bedding et al. 2007b) and

possibly Procyon (Bedding et al. 2010b), as well as in the cases of the CoRoT target

HD 49385 (Deheuvels et al. 2010) and of a few Kepler targets (e.g., Metcalfe et al.

2010; Campante et al. 2011; Mathur et al. 2011). The diagnostic potential of mixed

modes is also being recognized by the red-giant community: detected g-mode period

spacings in red giants (Beck et al. 2011) are used to discriminate between hydrogen-

and helium-burning red-giant stars (Bedding et al. 2011; Mosser et al. 2011a).

Bedding (2011) suggested a new asteroseismic diagram – inspired by the C-D di-

agram – in which the frequencies of the avoided crossings (i.e., the frequencies of the

pure g modes in the core cavity) for a number of stars are plotted against the large

separation of the p modes (e.g., Campante et al. 2011). This so-called p-g diagram

could prove to be an instructive way to display results of many stars and to allow for

a first comparison with theoretical models. Much of the diagnostic potential of mixed

modes can be captured in this way, since their overall pattern is determined by the
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Figure 1.17: Échelle diagram showing computed and observed oscillation fre-
quencies for η Boo - Symbol shapes indicate mode degree: l=0 (circles), l=1 (triangles),
and l= 2 (squares). Open symbols represent computed frequencies corresponding to the
model being considered in the current discussion and that has been indicated with a vertical
line in Fig. 1.16. Filled symbols represent a combined set of observed frequencies based on
the works of Kjeldsen et al. (2003) and Carrier et al. (2005). Symbol size reflects the am-
plitude of a mode relative to that of a (purely acoustic) radial mode of the same frequency.
The dotted line connects the two modes undergoing an avoided crossing as depicted in
panel (b) of Fig. 1.16. Also visible, although only for the computed frequencies, is a second
avoided crossing at the low-frequency end. From Christensen-Dalsgaard & Houdek (2010).

mode bumping at each avoided crossing, which in turn is determined by the g modes

trapped in the core.

In his Lecture Notes on Stellar Oscillations, J. Christensen-Dalsgaard proposed a

simple analogy based on coupled oscillators to describe an avoided crossing between

two modes. Very recently, Deheuvels & Michel (2010) presented an extension of that

analogy to the case of more than two modes, having shown that the presence of an

avoided crossing will induce a characteristic distortion of the ridge of degree l, an effect

that is most prominent for l=1 modes. Based on the behavior of the eigenfrequencies,

they concluded that HD 49385 should be in the post-main-sequence phase.
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1.6 Observational aspects

1.6.1 Techniques

There are two main observational techniques used in asteroseismology: (i) photometric

observations of variability in the stellar flux resulting from the intrinsic pulsation of

the star and (ii) spectroscopic observations of velocity variations due to the motion

of elements on the stellar surface. It should be noted that intensity and velocity (or

Doppler) observations sample the same properties of the pulsations, although not in

exactly the same way. In fact, we have already seen in Sect. 1.3.2 that the response

of velocity observations to modes of moderate degree is larger compared to intensity

observations. Such difference in response can in principle be used in the process of

mode identification, a particularly complicated issue in the case of classical pulsators.

Velocity shifts of spectral lines are measured using high-dispersion spectrographs

with stable reference sources, mounted on ground-based telescope facilities. The oscil-

lation amplitudes in solar-like pulsators are nonetheless extremely small, particularly

for main-sequence stars (see Fig. 1.18): e.g., for the Sun the velocity amplitude per

mode is typically less than 15 cm s−1, while the corresponding amplitude in broadband

intensity is around 4 ppm. However, the last decade or so has seen a rampant increase

in the achievable precision of radial-velocity measurements promoted by the detection

of extrasolar planets. Presently, radial-velocity determination has reached a precision

of only a few tens of cm s−1 per exposure. It should be noted that this method is

strongly biased toward low-effective temperature and slowly-rotating stars, since veloc-

ity observations require the analysis of many narrow spectral lines, as well as toward

subgiant and giant stars, as a result of their larger intrinsic amplitudes.

Most of the pre-CoRoT detections have indeed come from high-precision radial-

velocity measurements using spectrographs such as: CORALIE at the 1.2-m Euler

telescope at ESO La Silla in Chile, HARPS at the ESO La Silla 3.6-m telescope,

UCLES at the 3.9-m AAT in Australia, UVES at the 8.2-m UT2 of the VLT at ESO

Paranal in Chile, SARG at the 3.6-m TNG in La Palma, etc. Besides weather insta-

bilities, a serious limitation when it comes to ground-based asteroseismic observations

of solar-like pulsators is the lack of dedicated facilities, either in the format of a net-

work of telescopes at low and/or intermediate latitudes or as an asteroseismic telescope

in Antarctica. This considerably undermines both the duration and continuity of the
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.18: Amplitudes of solar-like oscillations in a variety of stars - Amplitudes
have been normalized so as to correspond to the amplitude per radial mode. The location
of νmax occurs at lower frequencies for more evolved stars, while the velocity amplitude
generally increases with increasing L/M . In order to allow for a direct comparison, the
solar data were obtained by observing the blue sky with a technique corresponding to the
stellar observations. From Arentoft et al. (2008).

available observations due to diurnal interruptions and the annual motion of the Earth.

In an attempt to augment the duty cycle of ground-based observations, several success-

ful double-site campaigns have been coordinated that used the instruments in Chile

and at the AAT (e.g., Butler et al. 2004; Kjeldsen et al. 2005). These coordination

efforts culminated in the realization of a multi-site campaign to measure oscillations in

the F5IV star Procyon, which has been the most extensive campaign so far organized

on any solar-like pulsator (Arentoft et al. 2008). Furthermore, a dedicated network of

1-m telescopes equipped with iodine-stabilized spectrographs is the goal of the SONG

project (Grundahl et al. 2009a,b), while the SIAMOIS project (Mosser et al. 2008) has

plans to install an instrument performing spectrometric observations at the Concordia

station at Dome C in Antarctica.
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1.6 Observational aspects

On the other hand, performing intensity measurements presents two significant ad-

vantages: the instrumentation is rather simple and the flux is measured within bands

of medium to low spectral resolution. Nevertheless, the intrinsic stellar background

signal arising from non-oscillatory fluctuations associated with granulation, activity,

etc., is substantially higher for photometric measurements than for spectroscopic mea-

surements, meaning that velocity observations have higher SNR at low frequencies

(e.g., Harvey 1988). The fact that photometric measurements are primarily sensitive

to temperature variations – caused by the compression and expansion of the stellar at-

mosphere during the oscillation cycle – explains their higher sensitivity to granulation

(the sloping background seen in Fig. 1.9 is actually due to granulation). Figure 1.19

compares the solar spectra as measured in velocity with GOLF (Gabriel et al. 1995)

and in intensity using the green channel of the VIRGO/SPM, both instruments being

on board the SOHO spacecraft.

When envisaging the study of classical pulsators, characterized by the relatively

high amplitudes of their oscillations, the use of ground-based photometry is ubiquitous,

owing to the fact that most small and medium-sized telescopes have the necessary in-

strumentation to carry out absolute or relative photometry in a variety of photometric

systems. However, scintillation from the Earth’s atmosphere strongly limits the achiev-

able precision of ground-based photometry. Until now, all ground-based attempts to

detect solar-like oscillations in stars near the main sequence through intensity measure-

ments have failed. The most ambitious enterprise consisted of a multi-site campaign –

using differential photometry and employing most of the world’s then-largest telescopes

– on the open cluster M67 that failed, however, to detect any oscillations (Gilliland et al.

1993). In some cases upper limits for oscillation amplitudes were well below the the-

oretical predictions, which are now known to have been overestimated. It should be

noted that the observed stars in M67 consisted of turn-off stars somewhat hotter than

the Sun. Lately, two ground-based photometric campaigns have attempted to detect

solar-like oscillations in red-giant cluster members (Frandsen et al. 2007; Stello et al.

2007). Having been the only successful of the two campaigns, Stello et al. (2007) were

able to make the first test of relevant scaling relations with an homogeneous ensemble

of stars and to detect excess power consistent with the expected signal from stellar

oscillations.
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.19: Comparison of solar spectra computed from velocity and inten-
sity observations - Velocity observations were performed with GOLF, while intensity
observations are from the green channel of the VIRGO/SPM. Both instruments are on
board the SOHO spacecraft. The stellar background signal has contributions both from
activity and from granulation. A simple Harvey-like profile (cf. Eq. 2.74) has been used to
describe the background signal with dashed curves representing the different components
of such profile. The smoothed spectra are shown as solid thick curves. From Grundahl
et al. (2007).

The development of space-based asteroseismology using the technique of ultra-high-

precision photometry has been a major breakthrough. It finally provided the possibility

of carrying out long and almost uninterrupted observations of the same targets. More-

over, using moderate apertures, space photometry is capable of detecting oscillations

whose amplitudes are about 1 ppm. Non-dedicated instruments, such as the three Fine

Guidance Sensors on the Hubble Space Telescope (e.g., Zwintz et al. 1999; Gilliland

et al. 2011), the 52-mm star camera on the WIRE satellite (e.g., Buzasi 2002; Bruntt

et al. 2005) and the SMEI experiment on board the Coriolis satellite (e.g., Tarrant

et al. 2007, 2008), have been used to acquire high-precision photometric data for aster-

oseismic studies.
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The Canadian microsat MOST (e.g., Walker et al. 2003), the first dedicated as-

teroseismology mission to be launched successfully (in June 2003), is able to measure

intensity variations of relatively bright stars by producing light curves with time spans

of the order of a few weeks. It is not expected, however, to reach the low-noise levels

required for the detection of solar-like oscillations in main-sequence stars. The French-

led CoRoT mission, launched in December 2006, produced a major leap in the domain

of space-based asteroseismology. Photometric variations of a few hundred asteroseis-

mic targets are being monitored in the course of the mission, although the number

of observed solar-like pulsators residing on or near the main sequence is quite reduced

(just over ten). A major strength of this mission resides in the possibility of conducting

nearly continuous observations, extending over five months, of the same field of view.

A further advance is provided by the asteroseismic program of the Kepler mission,

launched in March 2009, whereby thousands of stars have been monitored during a

survey phase, after which there is the possibility of conducting long-term follow-ups

of a selection of those stars. Kepler will lead to a revolution in the field of solar-like

oscillations, since the number of known solar-like pulsators is expected to increase by

several orders of magnitude.

If selected for funding following its present design study, the ESA PLATO mission1

(Catala 2009) will provide very extensive and high-quality asteroseismic data as an

integral part of its goal to study extrasolar planetary systems. A more distant milestone

should be reached when imaging of stellar surfaces will be made possible. The Stellar

Imager is a planned space-based interferometer, designed to enable 0.1-milliarcsecond

spectral imaging of stellar surfaces and capable of probing flows and structures in stellar

interiors through asteroseismology (Christensen-Dalsgaard et al. 2011).

1.6.2 The observational status

The information conveyed by solar-like oscillations can be used to determine funda-

mental stellar properties such as mass, radius, and age. Furthermore, the internal

stellar structure can be constrained to unprecedented levels provided that individual

mode parameters are measured. We thus believe that asteroseismology will produce

significant improvements on the theories related to stellar structure and evolution, on
1Unfortunately, shortly before the submission of this dissertation, the news came that ESA had

not selected PLATO in the context of its Cosmic Vision program.
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.20: Power spectrum of η Boo from equivalent-width measurements
- There is a clear hump of excess power centered at about 850 µHz due to solar-like os-
cillations. The inset depicts the power spectrum of the window function (see Sect. 2.1.1
for a definition). The observations were made over six nights using the 2.5-m Nordic
Optical Telescope (single-site observations). Owing to the daily gaps in the data, strong
sidelobes appear in the spectral window at splittings of ±1 cycle/day or, equivalently,
±11.57 µHz. These sidelobes greatly complicate the determination of individual frequen-
cies. From Kjeldsen et al. (1995).

topics as diverse as energy generation and transport, rotation and stellar cycles. The

interdisciplinary aspect of the field should not be neglected, the best example of which

is probably its potential use to characterize exoplanet-host stars, thus providing key

information for understanding the formation and evolution of planetary systems, as

well as for constraining the location of habitable zones based on a knowledge of the

stellar magnetic activity.

The search for solar-like oscillations in stars other than the Sun has started some

thirty years ago. The first hint of a hump of excess power with a frequency depen-

dence similar to the one observed in the solar case was obtained by Brown et al. (1991)

from radial-velocity observations of Procyon (α CMi). The first plausible detection

of individual oscillation frequencies and a large frequency separation is, however, at-

tributed to Kjeldsen et al. (1995), who observed the G0IV star η Boo by employing

a novel technique that involved measuring fluctuations in the equivalent widths of the

temperature-sensitive Balmer lines using low-resolution spectroscopy (see Fig. 1.20 for a

power spectrum of the observations). Subsequently, Brown et al. (1997) were unable to

confirm the presence of oscillations in η Boo using radial-velocity measurements, which
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would be later confirmed by further equivalent-width and radial-velocity measurements

by Kjeldsen et al. (2003), as well as by independent radial-velocity measurements car-

ried out by Carrier et al. (2005). Space-based observations of this star, conducted

with the MOST satellite, led to considerable controversy after claims that a series of

low-overtone p modes had been identified (Guenther et al. 2005). The fact that the

orbital frequency of the spacecraft is nearly a multiple of the large separation means

that caution is needed in the interpretation of those low-frequency peaks.

Coming back to the case of Procyon, it is interesting to note that not until 1999

were solar-like oscillations definitely confirmed in this star (Martić et al. 1999). Be-

ing the eighth brightest star in the night sky, Procyon has indeed been a long-time

favorite for the search of oscillations, with several independent radial-velocity studies,

mostly single-site, reporting an excess in the power spectrum. Controversy arised when

photometric observations obtained with MOST failed to detect oscillations (Matthews

et al. 2004), leading Bedding et al. (2005) shortly thereafter to argue that such non-

detection was consistent with the ground-based data. All these efforts culminated in the

realization of an extensive multi-site campaign carried out in January 2007, whereby

high-precision velocity observations over more than three weeks were obtained with

eleven telescopes at eight observatories. The analysis of these observations has been

presented in Arentoft et al. (2008) and Bedding et al. (2010b). Given my extensive con-

tribution to the latter paper, I have decided to place it as a supplement in Appendix

B. In the latest work dedicated to Procyon, Huber et al. (2011a) compared a new and

more accurate 2007 set of MOST data with the simultaneous data acquired during the

multi-site campaign, concluding that the MOST power spectrum shows clear evidence

of individual oscillation frequencies and thus refuting the renewed non-detection claims

made by Walker (2008).

The year 2001 came and oscillations were found in the G2IV star β Hyi and in the

G2V star α Cen A. The following year would also bring the first firm establishment of

solar-like oscillations in a giant star (ξ Hya; Frandsen et al. 2002), based on a continuous

1-month monitoring with CORALIE.

Bedding et al. (2001) and Carrier et al. (2001) confirmed the presence of solar-

like oscillations in β Hyi, but were unable to identify individual mode frequencies.

Subsequently, Bedding et al. (2007b) observed this star during more than a week with

HARPS and UCLES, being able to identify 28 oscillation modes that included some
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

mixed modes of degree l= 1. Frequently regarded as an older Sun, β Hyi is for that

reason a particularly interesting object of study.

During the last decade, the visual binary system α Cen has been a preferred aster-

oseismic target due to its proximity and to the similarity of its components to the Sun.

The unambiguous detection of solar-like oscillations in α Cen A by Bouchy & Carrier

(2001, 2002), based on 13 nights of single-site observations with CORALIE, is hailed

as a milestone in the field, confirming the earlier claimed detection made by Schou

& Buzasi (2001) with the WIRE satellite. Simultaneously with the CORALIE obser-

vations, a double-site campaign was being devoted to this star employing UVES and

UCLES (Butler et al. 2004; Bedding et al. 2004). In the meantime, a re-analysis of the

WIRE data (Fletcher et al. 2006) and ground-based spectroscopy with HARPS (Bazot

et al. 2007) have been conducted. Very recently, de Meulenaer et al. (2010) combined

and analysed the radial-velocity time series obtained in May 2001 with CORALIE,

UVES, and UCLES (see Sect. 3.1.2).

These early discoveries paved the way for the detection of solar-like oscillations in

a number of stars. A thorough, although pre-CoRoT, observational review is provided

by Bedding & Kjeldsen (2008), referring not only to main-sequence and subgiant stars,

but also to G and K giants, semi-regular variables, and red supergiants. Although

ground-based spectroscopic campaigns seem to be loosing momentum as we move deep

into the era of space asteroseismology, it should be noted that they provide the ultimate

precision for asteroseismic investigations, at least for bright and/or nearby stars. Not

to mention the ability to cover the whole sky and to target stars whose parallaxes and

other parameters are accurately known. While waiting for the advent of projects such

as SONG and SIAMOIS, it is still rewarding to explore the use of existing facilities

for short (1–2 weeks) ground-based campaigns devoted to carefully selected solar-like

pulsators. A striking example was the first application of asteroseismology (8 nights

of observations with HARPS) to an exoplanet-host star (µ Ara; Bouchy et al. 2005;

Bazot et al. 2005). Another remarkable example is the recent work of Bazot et al.

(2011), who have employed asteroseismology (12 nights with HARPS) and long-baseline

interferometry (with the PAVO beam-combiner at the CHARA array) in order to derive

the radius and mass of the solar twin 18 Sco (see Sect. 3.1.1).

Asteroseismology has definitely entered a new and golden era with the advent of the

CoRoT and Kepler space missions. Together, they are up to date responsible for the
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detection of solar-like oscillations in several hundred main-sequence and subgiant stars,

as well as in several thousand stars residing on the red-giant branch. These numbers

are indeed stratospheric. An overview of the most important results obtained so far

with both these space missions is provided by Garćıa (2011).

The CoRoT satellite has been the first asteroseismic mission to be able to perform

ultra-high-precision, wide-field photometry for extended and continuous periods of time

(up to 150 days) on the same targets. Launched into an inertial polar orbit at an altitude

of 897 km, it carries a 4-CCD array fed by a 27-cm telescope and is able to measure

stellar brightnesses to µmag precision (Baglin et al. 2006). The mission comprises two

main scientific programs – asteroseismology and the detection of exoplanets by the

transit method – simultaneously working on adjacent fields in the sky.

In the asteroseismic context, CoRoT has been successful in providing observations

that allowed a seismic analysis of a few late-type main-sequence and post-main-sequence

stars displaying solar-like oscillations (Appourchaux et al. 2008; Michel et al. 2008;

Barban et al. 2009; Benomar et al. 2009b; Garćıa et al. 2009; Mosser et al. 2009;

Deheuvels et al. 2010; Mathur et al. 2010a). These have been joined by a study of

the exoplanet-host star HD 52265 (see Sect. 3.2.2; Ballot et al. 2011). The availability

of long time-series data on solar-type stars presents good prospects for probing stellar

cycles with asteroseismology (e.g., Chaplin et al. 2007; Metcalfe et al. 2007; Karoff

et al. 2009; Chaplin 2011). Garćıa et al. (2010) recently uncovered the first evidence

of global changes in the oscillation frequencies and mode amplitudes associated with

a stellar activity cycle in another solar-type star, to be specific, the CoRoT target

HD 49933 (see Fig. 1.21). The results on HD 49933 (with a period of the stellar

cycle probably between 1 and 2 years) seem to be consistent with the paradigm that

stars divide into two distinct sequences in terms of activity (the active sequence and

the inactive sequence), with stars along each sequence displaying a similar number of

rotational periods per activity cycle (e.g., Böhm-Vitense 2007), meaning that solar-type

stars with short rotational periods – HD 49933 has a surface rotational period of about

3.4 days – tend to have short activity cycles.

Notable success came from the asteroseismic study of several hundreds of red giants

observed in the exoplanet channel of CoRoT. These data made it possible to establish

new seismic scaling relations (e.g., Hekker et al. 2009; Mosser et al. 2010), to unam-

biguously detect for the first time non-radial modes in red giants (De Ridder et al.
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1. ASTEROSEISMOLOGY OF SOLAR-LIKE STARS

Figure 1.21: Evidence of a magnetic activity cycle in the Sun-like star HD 49933
- Temporal evolution of the mode amplitudes (top panel), the frequency shifts using two
different methods (middle panel), and a starspot proxy (bottom panel). The seismic in-
dicators (top and middle panels) are anticorrelated in time – as observed for the Sun –
and reveal a modulation in the second epoch that suggests a period of at least 120 days
related to the internal magnetic activity. Moreover, the starspot signature confirms the
existence of an activity cycle, which seems to be temporally shifted compared with the
seismic indicators. From Garćıa et al. (2010).

2009; Carrier et al. 2010) and to directly estimate stellar masses and radii from scaling

relations (Kallinger et al. 2010b). The studies are being extended to make inference

on the red-giant population – dominated by red-clump stars in the CoRoT ensemble –

and by that means to test population-synthesis models of the evolution of the Galaxy

(Miglio et al. 2009). The establishment of a universal red-giant oscillation pattern

(Mosser et al. 2011b) and the analysis of mixed modes in these stars to determine their

evolutionary status (Mosser et al. 2011a) constitute the latest developments.

The NASA Kepler mission was designed with the intent of detecting – using the

transit photometry method – Earth-like planets in and near the habitable zones of

late-type main-sequence stars (Borucki et al. 2010; Koch et al. 2010). The satellite,
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Figure 1.22: H-R diagram of solar-type stars displaying solar-like oscillations
from seven months of Kepler survey data - Symbol size is proportional to the SNR
in the acoustic spectrum. The location of the Sun is indicated with the usual solar symbol.
Dotted curves represent evolutionary tracks for solar composition, computed for masses
ranging from 0.7 to 1.5 M�. The dashed red line marks the location of the red edge of the
Cepheid instability strip. Adapted from Chaplin et al. (2011b).

which operates in an Earth-trailing heliocentric orbit, consists of a 95-cm aperture

photometer with a CCD array capable of producing photometric observations with a

precision of a few ppm during a period of 4–6 years. The high-quality data provided

by Kepler are also well suited for conducting asteroseismic studies of stars as part of

the Kepler Asteroseismic Investigation (KAI; Gilliland et al. 2010a). Photometry of

the vast majority of these stars is conducted in long-cadence mode (29.4 minutes; see

Jenkins et al. 2010), whereas a revolving selection of up to 512 stars are monitored in

short-cadence mode (58.85 seconds; see Gilliland et al. 2010b).

Short-cadence data are necessary in order to investigate solar-like oscillations in

main-sequence and subgiant stars, whose dominant periods are of the order of several

minutes (e.g., Chaplin et al. 2010; Metcalfe et al. 2010). Christensen-Dalsgaard et al.
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(2010) reported the first application of asteroseismology to known exoplanet-host stars

in the Kepler field. During the first seven months of Kepler science operations, an

asteroseismic survey of solar-type stars – each star being observed for one month at a

time in short-cadence mode – made it possible to detect solar-like oscillations in about

500 targets (see Fig. 1.22). This constitutes an increase of one order of magnitude

in the number of such stars with confirmed oscillations (Chaplin et al. 2011b). This

large, homogeneous data sample opens the possibility of, for the first time, conducting

ensemble asteroseismology on a population of solar-type field stars (see Sect. 3.3.2). A

statistical survey of trends in relevant seismic parameters will allow tests of basic scaling

relations, comparisons with trends predicted from models, and lead to crucial insights

on the detailed modeling of stars (e.g., Chaplin et al. 2011a,c; Huber et al. 2011b;

Verner et al. 2011b; White et al. 2011a). Performing what might be called differential

(or comparative) seismology is also made possible by picking from a large ensemble

pairs, small groups, or sequences of stars sharing common stellar properties such as

mass, composition, or surface gravity (e.g., Silva Aguirre et al. 2011b). This allows

eliminating any dependence of the results on the common property, or properties. Since

the start of the mission, a selection of survey stars have been continuously monitored in

short-cadence mode to test and validate the time-series photometry, five of which show

evidence of solar-like oscillations. The analysis of two of these solar-like oscillators,

namely, KIC 10273246 and KIC 10920273, is presented in Campante et al. (2011).

This article can be found as a supplement in Appendix C. Two other such oscillators,

namely, KIC 11395018 and KIC 11234888, are analysed in a companion paper (see

Sect. 3.3.3; Mathur et al. 2011).

Studies of large samples of long-cadence G and K giants, extending in luminosity

from the red clump down to the bottom of the giant branch, have shown clear evidence

of the presence of l = 3 modes (Bedding et al. 2010a), while confirming theoretical

scaling laws (Huber et al. 2010; Hekker et al. 2011b) and allowing the computation

of asteroseismic fundamental parameters (Kallinger et al. 2010a). Photometric data

of red giants in the open cluster NGC 6819 allowed a first clear detection of solar-

like oscillations in cluster stars to be made, and provided additional tests for cluster

membership based on the analysis of the asteroseismic parameters (Stello et al. 2010).

Other seismic studies of red giants in open clusters ensued (e.g., Basu et al. 2011;

Hekker et al. 2011a).
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Chapter 2

Data analysis in asteroseismology

This chapter is intended as a practical guide into some of the main data analysis meth-

ods and techniques employed contemporarily in asteroseismology of solar-like stars, and

of which I have made recurrent use. The goal has been, since the very beginning, to

produce a text that could prove useful to initiate graduate students, by providing them

with a solid background in data analysis in asteroseismology, a mere starting point from

which they can follow their own paths. From my own personal experience, I must say

that this sort of manuals are indeed hard to come across with and increasingly so for

the initiate student. The interested reader may also want to consult Hans Kjeldsen’s

notes on Time Series Analysis in Astrophysics1 and the very useful crash course in

data analysis presented in Appourchaux (2011).

The way matters are presented in this chapter does not deviate much from the

structure adopted in the latter work. The subjects of digital signal processing and

spectral analysis are treated first. These concern the acquisition of continuous physical

signals to be subsequently digitally analysed. Notice that the instrumentation, although

being itself an integrant part of the data analysis process, is beyond the scope of this

dissertation and is thus not explicitly discussed here. The subjects of hypothesis testing

and parameter estimation are discussed next both from the competing Bayesian and

frequentist points of view. Finally, the implementation of a pipeline for mode parameter

analysis of Kepler data is described.

1http://owww.phys.au.dk/~hans/tidsserie/
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2. DATA ANALYSIS IN ASTEROSEISMOLOGY

2.1 Digital signal processing and spectral analysis

2.1.1 Nyquist sampling theorem and aliasing

Let us assume that s(τ) is the time-averaged value of some continuous signal x(t)

around t=τ :

s(τ) =

∫ +∞
−∞ w(t− τ)x(t) dt∫ +∞
−∞ w(t− τ) dt

, (2.1)

where w(t) is a suitable weighting function. Ideally, w(t) = δ(t) (the impulse or Dirac

delta function) and, in that particular case, the result of sampling a continuous signal

at uniform intervals separated by ∆t is represented by the product of the signal and

a set of impulse functions regularly spaced in time. Bearing in mind that the Fourier

transform of such a set of impulse functions is another set of impulse functions with

separation 1/∆t in the frequency domain, one can use the convolution theorem to show

that the transform of a properly sampled band-limited signal x(t) is periodic, with each

of its periods being equal to (within a constant) the transform of the continuous signal:

x(t)
+∞∑

n=−∞
δ (t− n∆t)⇐⇒ X(ν) ∗ 1

∆t

+∞∑
n=−∞

δ
(
ν − n

∆t

)
, (2.2)

where X(ν) is the Fourier transform of x(t), the symbol “⇐⇒” indicates a Fourier pair,

and the symbol “∗” denotes convolution. Therefore, information is not lost about the

original continuous signal x(t), which can be identically reconstructed by filtering a

single undistorted period out of the transform in Eq. (2.2) and then taking its inverse

Fourier transform. In practice, however, the original signal can only be approximately

recovered since we observe for a finite amount of time.

At this point, I find it appropriate to introduce a very important concept, to be

specific, that of the spectral window. For that purpose use is made of Eq. (2.2). In

this idealized example, the window function (i.e., the observational window) is given

by
∑+∞

n=−∞ δ (t− n∆t). The spectral window is simply the Fourier transform of the

window function and is thus given by 1
∆t

∑+∞
n=−∞ δ

(
ν − n

∆t

)
in the current example.

It is important to retain that the Fourier transform of a windowed signal is given

by the convolution of the spectral window with the transform of the continuous and

uninterrupted version of the signal (see Eq. 2.10 below for the case of finite and discrete

sampling).
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2.1 Digital signal processing and spectral analysis

But what is meant by a properly sampled signal, as mentioned above? The answer

to this question is given by the Nyquist sampling theorem (also known as the Nyquist-

Shannon sampling theorem; Nyquist 1928; Shannon 1949): It states that if the Fourier

transform of a continuous signal x(t) is band-limited1, i.e., is zero for all |ν|≥νlim, then

x(t) can be uniquely reconstructed from a knowledge of its sampled values at uniform

intervals of ∆t≤ 1/(2 νlim) (see Fig. 2.1). For a given uniform sampling interval ∆t,

the Nyquist frequency is defined as νNyq =1/(2∆t). In case the continuous signal being

sampled contains frequency components above the Nyquist frequency, these will give

rise to an effect known as aliasing, whereby the original spectrum will be distorted

due to spectral leaking. The signal is then said to be undersampled and can no longer

be uniquely recovered (see Fig. 2.2). The Nyquist frequency can be thought of as the

highest useful frequency to search for in the spectrum, although some authors will argue

that, based on astrophysical arguments, one can also accept frequencies above νNyq.

Going back to Eq. (2.1), a more realistic choice of w(t) would be that of a rectangular

pulse of width ∆tint ≤ ∆t, thus mimicking the effect of integration of the detector,

normally a CCD. This results in multiplication of the transform of the continuous

signal by sinc(ν∆tint):[
x(t) ∗ 1

∆tint
Π
(
t−∆tint/2

∆tint

)] +∞∑
n=−∞

δ (t− n∆t)⇐⇒

⇐⇒
[
X(ν) sinc(ν∆tint) eiπν∆tint

]
∗ 1

∆t

+∞∑
n=−∞

δ
(
ν − n

∆t

)
, (2.3)

where Π
(
t−∆tint/2

∆tint

)
is a boxcar function of width ∆tint centered at ∆tint/2. Therefore,

integration reduces the amplitude of the high-frequency noise in the time series, an effect

that is maximal for a fill cycle of 100%, i.e., for ∆tint =∆t. In truth, the asteroseismic

signal is not band-limited, meaning that the highest frequencies will not be properly

sampled, ultimately resulting in an undersampled signal. In the solar case, the power

of the background signal at high frequencies shows a drop-off proportional to ν−2, or

possibly even more accentuated (e.g., Karoff 2012). Therefore, it is critical to make

sure that the fill cycle is as high as possible, thereby helping to reduce the aliasing

1Conversely, if x(t) is time-limited, i.e., is zero for all |t| ≥ T/2, then x(t) can be uniquely recon-

structed from samples of its transform, X(ν), at frequency intervals of 1/T .
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Figure 2.1: Illustration of the Nyquist sampling theorem (proper sampling) -
Panels (a) and (b) respectively represent a continuous waveform, h(t), and its band-limited
Fourier transform, H(f). Panels (c) and (d) respectively represent the window function,
s(t), and the spectral window, S(f). Panels (e) and (f) respectively represent the sampled
waveform, h(t)s(t), and its Fourier transform, H(f) ∗ S(f). From Gregory (2005).

effects. The VIRGO/SPM instrument on board SOHO, for example, has a fill cycle of

about 94% (Fröhlich et al. 1997).

When the available data are not uniformly sampled there is, strictly speaking, no

Nyquist frequency, even though equivalent frequencies have been suggested in the lit-

erature (e.g., Bretthorst 2000). Choosing an adequate value depends on the magnitude

of the departure from uniformity of the sampling intervals. If large, it has been shown

that νNyq could in fact be controlled by the greatest common divisor of the sampling

intervals; if small, νNyq can be estimated using either the mean or the median sampling

interval.
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Figure 2.2: Illustration of the Nyquist sampling theorem (undersampling) -
Similar to Fig. 2.1 but for the case of an undersampled signal. From Gregory (2005).

Regular gaps in the time series due to diurnal interruptions and, for data sets span-

ning more than one year, caused by the annual motion of the Earth, are usually present

in asteroseismic observations carried out from the ground. These regular gaps also give

rise to frequency aliasing. The former kind of so-called daily aliases, appearing at

splittings of ±1 cycle/day (or, equivalently, ±11.57 µHz) and their non-zero multiples

(see Fig. 1.20), are particularly problematic when observing solar-like oscillations since

frequency separations of that same magnitude are common. A similar occurrence con-

cerns the CoRoT satellite. The extra noise associated with data collected by CoRoT

while passing across the South Atlantic anomaly (e.g., Auvergne et al. 2009) gives rise

to strong harmonics of the satellite’s orbital frequency (see Fig. 2.3).

The effect on the spectral window caused by the presence of regular gaps in the
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Figure 2.3: Power spectral window for CoRoT observations of HD 52265 - A
forest of peaks corresponding to the orbital frequency (161.7µHz), its harmonics, and also
daily aliases are clearly visible on a logarithmic scale. The inset provides a close-up around
zero frequency. The power spectral window has been normalized so that the ordinate at
zero frequency takes the value of the fractional duty cycle. From Ballot et al. (2011).

time series can be understood by means of a simple idealized example. Let us start

by constructing a window function that is the result of the convolution of a boxcar

function of width T0 with a set of impulse functions with separation T > T0. Such a

window function then simply consists of a series of boxcar functions of width T0 whose

midpoints are separated at uniform intervals of T . Taking T =1 day and T0 =1/3 day,

for example, could very well correspond to the window function obtained from a single-

site ground-based campaign where one observes during 8 hours every night. Let us

compute the corresponding spectral window:

1
T0

Π
(
t

T0

)
∗

+∞∑
n=−∞

δ (t− nT )⇐⇒ sinc(νT0)
1
T

+∞∑
n=−∞

δ
(
ν − n

T

)
. (2.4)
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The spectral window thus results from the product of a sinc function and a bed of

nails. As T0 increases (i.e., increasing duty cycle) the central lobe of the sinc function

becomes narrower with an accompanying reduction of the aliases at ±1/T . In the limit

when T0→T , i.e., the data recording is continuous and its length infinite, the spectral

window is an impulse function and the aliases consequently vanish.

2.1.2 Temporal filtering

A problem commonly encountered while analysing asteroseismic time series is the pres-

ence of low-frequency drifts which can be either of instrumental origin or else intrinsic

to the star. These low-frequency drifts introduce a background in the Fourier domain

that will ultimately lead to a decrease of the SNR of the oscillation modes in the power

spectrum. In order to prevent this from happening, high-pass filters are widely used,

ideally reducing the effect of the drifts while preserving the relevant signals.

Let us start by shedding some light on the process of smoothing of a time series,

which can usually be interpreted as an application of a low-pass filter. Smoothing

consists in convolving a signal x(t) with a weighting function w(t) (possibly complex)

in the time domain:

xlow(t) = x(t) ∗ w(t)⇐⇒ Xlow(ν) = X(ν)W (ν) , (2.5)

where X(ν) and W (ν) are the transforms of x(t) and w(t), respectively. Conversely, a

high-pass filter can be implemented by simply computing xhigh(t)=x(t)− xlow(t):

xhigh(t)⇐⇒ Xhigh(ν) = X(ν) [1−W (ν)] . (2.6)

Typical examples of the weighting function w(t) are a boxcar function, a triangular

function (equivalent to the convolution of two boxcar functions), and a bell-shaped

function (equivalent to the convolution of four boxcar functions or two triangular func-

tions). The transform of the simple boxcar function is the sinc function and thus leads

to an excessive ringing (or Gibbs-like) effect in the Fourier domain. Multiple-boxcar

smoothing is therefore advisable as a means to suppress this ringing effect. It is up to

the data analyst, however, to carefully take into consideration the trade-off between

ringing artifacts and frequency-domain sharpness.
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A commonly used high-pass filter in helioseismology is the backwards-difference

filter (e.g., Garćıa & Ballot 2008):

xbd(t) = x(t)− x(t− t0) = x(t)− [x(t) ∗ δ(t− t0)] , (2.7)

where a time shift t0 has been considered, while becoming apparent that w(t)=δ(t−t0)

in Eq. (2.5). Using Eq. (2.6), one can then determine the transfer function of the

backwards-difference filter:

|1−W (ν)|2 =
[
2 sin

(
π

2
ν

νc

)]2

, (2.8)

where the cut-off frequency, νc =1/(2 t0), has been introduced.

2.1.3 Discrete Fourier Transform

Attention is now drawn to the computation of an estimate of the Fourier transform of

a function based on a finite number of samples. Suppose there are N evenly spaced

available samples x(tn)=x(n∆t) at intervals of ∆t, with n=0, 1, 2, . . . , N−1. Then ac-

cording to the Nyquist sampling theorem (see Sect. 2.1.1), useful frequency information

is only obtainable for |ν| ≤ νNyq =1/(2∆t). The Discrete Fourier Transform (DFT) is

defined as:

XDFT(νp) =
N−1∑
n=0

x(tn) ei 2πνptn for νp = p/(N∆t) , p = 0, 1, 2, . . . , N − 1 . (2.9)

The transform XDFT(ν) has periodicity 1/∆t or twice the Nyquist frequency. Then

p= 0 corresponds to the DFT at zero frequency and p=N/2 to the value at ±νNyq.

Values of p between N/2+1 and N−1 correspond to values of the DFT for negative

frequencies from −(N/2−1)/(N∆t) to −1/(N∆t).

For deterministic processes (not necessarily periodic), the observed Fourier trans-

form, XDFT(ν), results from the convolution of the true Fourier transform X(ν) with

a spectral window WDFT(ν) (e.g., Deeming 1975):

XDFT(ν) = X(ν) ∗WDFT(ν) ≡
∫ +∞

−∞
X(ν − ν ′)WDFT(ν ′) dν ′ , (2.10)

where the Fourier pair composed of the window function and spectral window is given

by
N−1∑
n=0

δ(t− tn)⇐⇒WDFT(ν) =
N−1∑
n=0

ei 2πνtn . (2.11)
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Cooley & Tukey (1965) introduced the Fast Fourier Transform (FFT), an efficient

method of implementing the DFT that removes certain redundancies in the computa-

tion and speeds up the calculation (the speed enhancement is approximately given by

N log2N/N
2).

2.1.4 Power spectral density estimation

As astrophysicists we are constantly being faced with the problem of having to analyse

waveforms that are in fact random processes. Observations are affected by noise asso-

ciated with the observed physical phenomenon and the instrumentation. Therefore, it

is necessary to develop suitable statistical approaches to spectral estimation.

Here, I present two common approaches to the estimation of the power spectral

density of a random process denoted by x(t). But first, a definition of the power

spectral density (PSD) needs to be given:

P (ν) = lim
T→∞

1
T

∣∣∣∣∣
∫ T/2

−T/2
x(t) ei 2πνt dt

∣∣∣∣∣
2

, (2.12)

where T is the length of the data set.

A widely employed approach to the estimation of the PSD is to use the periodogram,

also known as the Schuster periodogram and originally introduced in the field of mete-

orology (Schuster 1905):

P̂p(ν) =
1
T

∣∣∣∣∣
∫ T/2

−T/2
x(t) ei 2πνt dt

∣∣∣∣∣
2

. (2.13)

In practice this usually involves the computation of a FFT.

Before presenting the second approach to spectral estimation, the Wiener-Khintchine

theorem (Wiener 1930; Khintchine 1934) is introduced, according to which the power

spectral density, P (ν), and the autocorrelation function, φ(τ), are a Fourier pair:

φ(τ) =
∫ +∞

−∞
P (ν) e−i 2πντ dν ⇐⇒ P (ν) =

∫ +∞

−∞
φ(τ) ei 2πντ dτ , (2.14)

where

φ(τ) = lim
T→∞

1
T

∫ T/2

−T/2
x(t)x(t+ τ) dt . (2.15)

If we further assume that x(t) is a stationary and ergodic process, one then has

φ(τ) = E [x(t)x(t+ τ)] . (2.16)
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The Wiener-Khintchine theorem is absolutely crucial to the understanding of the spec-

tral analysis of random processes. It straightforwardly explains, for instance, why white

noise, whose autocorrelation function is the Dirac delta function, has constant power

spectral density.

Since the random process x(t) is observed over a finite time interval, an estimator

of φ(τ) has to be searched for:

φ̂(τ) =
1

T − |τ |

∫ T−|τ |

0
x(t)x(t+ |τ |) dt , |τ | < T . (2.17)

A second approach to the estimation of the PSD is the so-called correlation or lagged-

product estimator (commonly referred to as the Blackman-Tukey procedure; Blackman

& Tukey 1958a,b), which can be simply arrived at by employing the Wiener-Khintchine

theorem (cf. Eq. 2.14):

P̂c(ν) =
∫ +∞

−∞
w(τ)φ̂(τ) ei 2πντ dτ , (2.18)

where the window function w(τ) is unit for |τ |<T and zero elsewhere.

Finally, it can be shown (Jenkins & Watts 1968; Deeming 1975) that the mean (ex-

pectation) value of both the periodogram (cf. Eq. 2.13) and the correlation (cf. Eq. 2.18)

estimators is given by the convolution of the true power spectral density P (ν) with the

power spectral window, i.e.,

E
[
P̂p(ν)

]
= E

[
P̂c(ν)

]
= P (ν) ∗W (ν) , (2.19)

meaning that the mean value of the estimator will be biased unless, of course, the

data recording has infinite duration, in which case W (ν) is the Dirac delta function.

This relationship is essentially the same as that for deterministic processes presented

in Eq. (2.10).

2.1.4.1 The discrete case

The discrete form of the PSD is now presented based on the use of Parseval’s theorem

(Parseval des Chênes 1806). This theorem can be seen as an alternative formulation of

the energy conservation principle, stating that the energy in a signal x(t) computed in

the time domain equals the energy as computed in the frequency domain:∫ +∞

−∞
x2(t) dt =

∫ +∞

−∞
|X(ν)|2 dν , (2.20)
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where X(ν) is the Fourier transform of x(t). One immediately notices that |X(ν)|2 is

an energy spectral density. Recovering the same terminology that has been employed

in Sect. 2.1.3, the discrete form of Parseval’s theorem is introduced as:
N−1∑
n=0

x2(tn) ∆t =
N−1∑
p=0

|∆tXDFT(νp)|2 ∆ν , (2.21)

where ∆ν=1/(N∆t). By analogy with the continuous case, it is obvious that |∆tXDFT(νp)|2

is a discrete energy spectral density.

From Eq. (2.21) it can be easily shown that the average signal power, i.e., the ratio

of signal energy to its duration, is given by its mean-square amplitude:

1
N∆t

N−1∑
n=0

x2(tn) ∆t =
1
N

N−1∑
n=0

x2(tn)

=
N−1∑
p=0

|XDFT(νp)|2 ∆t
N

∆ν , (2.22)

where |XDFT(νp)|2 ∆t/N can be identified with the two-sided discrete PSD in units of

power per unit of bandwidth1. It should be noticed that this result can also be derived

from Eqs. (2.14) and (2.16) by setting τ=0:

φ(0) =
∫ +∞

−∞
P (ν) dν = E

[
x2(t)

]
. (2.23)

Finally, I introduce the one-sided discrete PSD, P (νq), defined only for nonnegative

frequencies (with q=0, 1, . . . , N/2):

P (ν0) =
∆t
N
|XDFT(ν0)|2 ,

P (νq) =
∆t
N

[
|XDFT(νp)|2 + |XDFT(νN−p)|2

]
, p = 1, 2, . . . , N/2− 1 , (2.24)

P (νN/2) =
∆t
N

∣∣XDFT(νN/2)
∣∣2 ,

where νN/2 = 1/(2∆t), viz., the Nyquist frequency. Furthermore, it follows from

Eq. (2.22) that P (νq) is normalized according to

N/2∑
q=0

P (νq) ∆ν =
1
N

N−1∑
n=0

x2(tn) . (2.25)

1To convert to units of power per bin one simply has to multiply by ∆ν.
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2.1.5 Statistics of the power spectrum

In the following I consider the statistics of the power spectrum of a pure noise signal.

Let x(t) represent a random process from which a finite number of samples denoted by

x(tn) have been drawn. These samples are assumed to be independent and identically

distributed1 (i.i.d.), with E [x(tn)] = 0 and E
[
x2(tn)

]
= σ2

0 for all n (i.e., the random

process is further assumed to be stationary). The DFT of the set x(tn) (cf. Eq. 2.9)

may be decomposed into its real and imaginary parts as:

XDFT(νp) = XRe
DFT(νp) + iXIm

DFT(νp)

=
N−1∑
n=0

x(tn) cos(2πνptn) + i
N−1∑
n=0

x(tn) sin(2πνptn) . (2.26)

It then follows from the Central Limit theorem that for a large number of samples (i.e.,

for large N) both XRe
DFT(νp) and XIm

DFT(νp) are normally distributed. Finally, given

the fact that XRe
DFT(νp) and XIm

DFT(νp) are independent and have the same normal

distribution, the power spectrum, |XDFT(νp)|2, of a pure noise signal then has by

definition a χ2 distribution with 2 degrees of freedom.

Bearing in mind that

∀p : E
[(
XRe

DFT(νp)
)2]

= E
[(
XIm

DFT(νp)
)2]

=
N

2
σ2

0 , (2.27)

and adopting |XDFT(νp)|2 ∆t/N as our normalization of the power spectrum, yields a

constant power spectral density for the noise given by σ2
0∆t. Consequently, at a fixed

frequency bin, the probability density, p(z), that the observed power spectrum takes a

particular value z, is given by

p(z) =
1

σ2
0∆t

exp
(
− z

σ2
0∆t

)
, (2.28)

having mean 〈z〉=σ2
0∆t and variance σ2

z≡〈z2〉−〈z〉2 =
(
σ2

0∆t
)2. The probability density

function of an exponential distribution with unit mean and unit variance is displayed

in the right-hand panel of Fig. 2.5.

Equation (2.28) enables one to derive the probability that the power in one bin is

greater than m times the mean level of the continuum, 〈z〉:

F (m) = e−m . (2.29)
1This would be the case for white Gaussian noise, although here I consider the more general case

of an unknown distribution.
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For a frequency band containing M bins, the probability that at least one bin has a

normalized power greater than m is then (e.g., Chaplin et al. 2002):

FM (m) = 1− (1− e−m)M , (2.30)

which approximates to FM (m) =Me−m for e−m� 1. Based on Monte Carlo simula-

tions, Gabriel et al. (2002) found that, to account for the modified statistics resulting

from oversampling1 the spectrum, the number of original bins M in the frequency in-

terval being considered should be multiplied by a factor ζ, which is a function of the

oversampling factor (see their table 1):

FM (m) = 1− (1− e−m)Mζ . (2.31)

Surprisingly, as N tends to infinity by sampling a longer stretch of data, the variance

(σ2
z) in the power spectrum remains unchanged. The information resulting from the

introduction of additional sampled points goes instead into producing estimates at a

greater number of discrete frequencies νp. This rather frustrating property can be seen

in Fig. 1.8 by comparing panel (c) with panels (a) and (b). There are, however, ways

of reducing the variance in the power spectrum. A very simple technique consists in

partitioning the original time series into k segments of equal length, computing their

separate power spectra and finally averaging them. Despite the spectral resolution

of the average spectrum being k times lower than that of the original spectrum, its

variance has now decreased by the same factor k. It should be noted that the statistics

of the average power spectrum now follows a χ2 distribution with 2k degrees of freedom

(Appourchaux 2003). The effect of reducing the variance in the power spectrum can be

seen in panel (d) of Fig. 1.8. There, the fact that the random excitation arises from a

system in statistical equilibrium means that averaging the power spectrum over a large

number of realizations will reduce the erratic behavior while preserving the spectral

feature.

Although stationarity is generally satisfied by the random processes under consider-

ation, the same is not true about the property of their samples being i.i.d., since these

processes may in fact have a memory. Nonetheless, it has been shown (Peligrad & Wu

1This is achieved by zero-padding the time series, i.e., adding zeros onto the end of the series.

Zero-padding is frequently used to accurately determine the amplitudes of intrinsically narrow spectral

features.
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2010) that even in that event both components of the Fourier transform are normally

distributed with zero mean and the same frequency-dependent variance.

A very interesting observational property of stochastically-excited modes can now

be tackled. Let us recall Eqs. (1.39) and (1.40), respectively describing the mode height

H of a resolved and an unresolved peak in the power spectrum. We define the noise-

to-signal ratio, β, of a given mode as:

β ≡ B/H =


(πσ2

0Γ∆t)/(2V 2
rms) for T � 2τ ;

∼ (σ2
0∆t)/(V 2

rmsT ) for T � 2τ .
(2.32)

Here, B = 〈z〉 = σ2
0∆t, represents the mean noise level. Therefore, given fixed noise

and mode characteristics, and a chosen observational cadence, the noise-to-signal ratio

cannot be improved with time once a mode is resolved, i.e., for T�2τ (Chaplin et al.

2003).

2.1.6 Generalized Lomb-Scargle periodogram

In astrophysics it is very common to deal with unevenly sampled time series. In that

event, an existing frequentist statistic known as the Lomb-Scargle periodogram (Lomb

1976; Scargle 1982, 1989) is widely used as a replacement for the Schuster periodogram,

the latter being only suitable in the case of uniform sampling. In the following I

introduce the generalized Lomb-Scargle periodogram (Bretthorst 2001b), which reduces

to the Lomb-Scargle periodogram for a real stationary sinusoid.

Let us assume the general case of quadrature data sampling, i.e., involving the

measurement of the real and imaginary parts of a complex signal. I let xRe(ti) denote

the set of NRe real data samples taken at times ti and xIm(t′j) denote the set of NIm

imaginary data samples taken at times t′j (total of N = NRe +NIm data samples).

The sampling is allowed to be non-uniform and it is not required that the ti and t′j
are simultaneous. Furthermore, the adopted model for both signals is that of a non-

stationary single sinusoid, and so one has:

xRe(ti) = A cos(2πν ti − θ)Z(ti) +B sin(2πν ti − θ)Z(ti) + error (2.33)

and

xIm(t′j) = B cos(2πν t′j − θ)Z(t′j)−A sin(2πν t′j − θ)Z(t′j) + error , (2.34)
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where “error” denotes the misfit between the data and the model, and Z(t) describes

an arbitrary amplitude modulation (e.g., exponential decay) whose time dependence

and parameters (if any) are fully specified. Z(t) can be thought of as a weighting or

apodizing function. The condition that the overall complex model be orthogonal leads

to the following definition of the angle θ1:

θ =
1
2

tan−1

[∑NRe
i=1 sin(4πν ti)Z2(ti)−

∑NIm
j=1 sin(4πν t′j)Z

2(t′j)∑NRe
i=1 cos(4πν ti)Z2(ti)−

∑NIm
j=1 cos(4πν t′j)Z2(t′j)

]
. (2.35)

Finally, having adopted the same nomenclature as used by Bretthorst (2001b), the

generalized Lomb-Scargle periodogram is given by

h2 =
R2(ν)
C(ν)

+
I2(ν)
S(ν)

, (2.36)

where

R(ν) ≡
NRe∑
i=1

xRe(ti) cos(2πν ti − θ)Z(ti)

−
NIm∑
j=1

xIm(t′j) sin(2πν t′j − θ)Z(t′j) , (2.37)

I(ν) ≡
NRe∑
i=1

xRe(ti) sin(2πν ti − θ)Z(ti)

+
NIm∑
j=1

xIm(t′j) cos(2πν t′j − θ)Z(t′j) , (2.38)

C(ν) ≡
NRe∑
i=1

cos2(2πν ti − θ)Z2(ti) +
NIm∑
j=1

sin2(2πν t′j − θ)Z2(t′j) , (2.39)

S(ν) ≡
NRe∑
i=1

sin2(2πν ti − θ)Z2(ti) +
NIm∑
j=1

cos2(2πν t′j − θ)Z2(t′j) . (2.40)

In the case of a real stationary sinusoidal signal (i.e., NIm = 0 and constant Z(t),

respectively), Eqs. (2.37) to (2.40) greatly simplify and the generalized Lomb-Scargle

periodogram (cf. Eq. 2.36) reduces to the Lomb-Scargle periodogram. Furthermore, for

uniformly sampled quadrature data and a stationary sinusoid it reduces to the Schuster

1For simultaneous sampling this condition is automatically satisfied and θ is defined to be zero.

71



2. DATA ANALYSIS IN ASTEROSEISMOLOGY

periodogram. The term generalized Lomb-Scargle has also been used in the literature

by Zechmeister & Kürster (2009) to denote the generalization to a full sine-wave fit,

including an offset and statistical weights based on the measurement errors. The two

approaches are indeed similar and I invite the interested reader to consult both works

and references therein.

I still would like to make a few remarks on the Lomb-Scargle periodogram. The

Lomb-Scargle periodogram is actually equivalent to a Least-Squares spectrum (e.g.,

Horne & Baliunas 1986), viz., the solution obtained by linear least-squares fitting to

the model
N∑
i=1

[x(ti)− a cos(2πν ti)− b sin(2πν ti)]
2 . (2.41)

For each test frequency ν, solutions are then obtained for the unknowns a and b that

are given by R(ν)/C(ν) and I(ν)/S(ν), respectively, after setting NIm =0 and Z(t)=1.

In addition, the Lomb-Scargle periodogram has the attractive property of retaining the

χ2
2 statistics (Scargle 1982). Fast computation of the periodogram is achieved using the

algorithm presented in Press & Rybicki (1989), whose trick is to carry out extirpolation1

of the data onto a regular mesh and subsequently employ the FFT, thus obtaining an

accurate approximation of the periodogram.

2.1.7 Gapped time series and bin correlations in the Fourier spectrum

The presence of gaps in the time series introduces frequency correlations in complex

Fourier space through convolution of the observable with the spectral window (Gabriel

1994). These correlations should be taken into account, especially when performing a

fit to the power spectrum (see Sect. 2.2.3). To that end, Stahn & Gizon (2008) describe

and implement a rather general method to retrieve maximum likelihood estimates of

the oscillation parameters which accounts for the proper statistics of the spectrum.

Here, however, I will merely summarize an important result derived in Appourchaux

(2011) that proves to be very useful for computing bin correlations in complex Fourier

space.

1Extirpolation is the process by which a function value at an arbitrary point is replaced by several

function values on a regular mesh.
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Let us assume that a random process denoted by x(t) is observed through a window

function w(t). Then the Fourier transform of the windowed signal is given by

X̃(ν) =
∫ +∞

−∞
x(t)w(t) ei 2πνtdt = X(ν) ∗W (ν) , (2.42)

where X(ν) and W (ν) are the transforms of x(t) and w(t), respectively. In his work,

Appourchaux (2011) elegantly arrives at the following useful expression for the mean

correlation between any two frequency bins in complex Fourier space:

E
[
X̃(ν1)X̃∗(ν2)

]
= 2

∫ +∞

−∞
E
[
X2

Re(ν)
]
W (ν1 − ν)W (ν − ν2) dν , (2.43)

where XRe(ν)≡<{X(ν)} and the superscript asterisk denotes the complex conjugate.

An alternative way to express this correlation, not provided in the aforementioned work,

is to use Eq. (2.42) to write:

E
[
X̃(ν1)X̃∗(ν2)

]
=
∫ ∫

E
[
x(t)x(t′)

]
ei 2π(ν1t−ν2t′)w(t)w(t′) dtdt′ . (2.44)

Further assuming that the process is stationary and ergodic, use of Eq. (2.16) then

leads to the following alternative formulation:

E
[
X̃(ν1)X̃∗(ν2)

]
=
∫ ∫

φ(τ)ei 2π(ν1τ+(ν1−ν2)t′)w(τ + t′)w(t′) dτ dt′ , (2.45)

where τ= t− t′.
Let us investigate what happens in the case of a continuous and infinite window

function, for which we know the spectral window to be the impulse function δ(ν). In

this case one has:

E
[
X̃(ν1)X̃∗(ν2)

]
= 2 E

[
X2

Re(ν1)
]
δ(ν1 − ν2) , (2.46)

where use was made of Eq. (2.43). From Eq. (2.46) it becomes apparent that a given

bin is uncorrelated with any other bin in the spectrum.

Furthermore, for slowly varying power spectra, i.e., for which the variations of

E
[
X2

Re(ν)
]

are slow with respect to W (ν), Eq. (2.43) may be rewritten as

E
[
X̃(ν1)X̃∗(ν2)

]
≈ 2 E

[
X2

Re(ν1)
] ∫ +∞

−∞
W (ν1 − ν)W (ν − ν2) dν

= 2 E
[
X2

Re(ν1)
] ∫ +∞

−∞
w2(t)ei 2π(ν1−ν2)t dν

= 2 E
[
X2

Re(ν1)
]
Wsq(ν1 − ν2) , (2.47)
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where the integral, denoted by Wsq(ν1 − ν2), is simply the Fourier transform of the

square of the window function. When observing white noise, E
[
X2

Re(ν)
]

is constant

and will be denoted by σ2. The equality in Eq. (2.47) then holds exactly.

Let us see what happens when the window function is rectangular with width T

and centered at t=0:

E
[
X̃(ν1)X̃∗(ν2)

]
= 2σ2 sin (πT (ν1 − ν2))

π(ν1 − ν2)
. (2.48)

Frequency bins are thus uncorrelated at frequency separations that are non-zero mul-

tiples of 1/T , the so-called Rayleigh resolution. And if one would instead opt for

apodizing (i.e., weighting) the data, such that the square of the window function be-

comes a triangular (Barlett) window while keeping T as the length of the observation?

The answer can be easily computed:

E
[
X̃(ν1)X̃∗(ν2)

]
= 2σ2

[
sin (πT (ν1 − ν2)/2)

π(ν1 − ν2)

]2

. (2.49)

This would in fact reduce the spectral leakage at high frequencies while increasing it at

the low-frequency end. Frequency bins are now uncorrelated at frequency separations

that are non-zero multiples of 2/T .

These simple calculations exemplify how the introduction of weights on the data may

induce modifications to bin correlations in Fourier space. Weights are commonly used

when analysing ground-based observations of stellar oscillations as a way of taking into

account the significant variations in data quality during a typical observing campaign,

especially when two or more telescopes are involved. This has certainly been the case

in the analysis of the time series of velocity observations obtained for Procyon over 25

days using 11 telescopes at eight observatories (Bedding et al. 2010b). In that work use

was made of two alternative weighting schemes, namely, noise-optimized weights and

sidelobe-optimized weights (see also Arentoft et al. 2009). Proper account was taken of

the weighting by using Eq. (2.47) to determine the effective frequency resolution prior

to the computation of the power spectrum.

2.1.8 Bayesian insight into the periodogram

The Schuster periodogram was originally introduced, rather intuitively, in order to

detect a periodicity and estimate its frequency. Jaynes (1987), however, demonstrated
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that the periodogram follows naturally from Bayesian probability theory1. Considering

the analysis of a time series known to contain a single sine wave with frequency ν0, which

is additionally contaminated with additive independent Gaussian noise with variance

σ2, Jaynes (1987) showed that the posterior probability of the frequency of the periodic

sinusoidal signal is approximately given by

p(ν|D, I) ∝ exp

{
P̂p(ν)
σ2

}
, (2.50)

where D and I respectively represent the observed data and the prior information, and

P̂p(ν) is the Schuster periodogram (cf. Eq. 2.13). The periodogram is defined here as

the squared magnitude of the FFT times the reciprocal of the number N of samples

drawn. If the noise variance is not a known quantity, then the resulting posterior

probability may instead be expressed in the form of a Student’s t distribution and is

given approximately by (Bretthorst 1988)

p(ν|D, I) ∝

[
1− 2 P̂p(ν)

Nx2

] 2−N
2

, (2.51)

where x2 is the mean-square amplitude of the data values. Equations (2.50) and (2.51)

do not require the data to be uniformly sampled provided that several specific conditions

are met.

By computing the first and second moments of the distribution in Eq. (2.50), Jaynes

(1987) also showed that 〈ν〉=ν0 and that, for a sine wave of amplitude A, the rms error

on the determination of the frequency is given by

σν =
√

6
π

σ

A

1
T
√
N

=
√

6
π

σ

A

√
∆t

T 3/2
, (2.52)

where T is the length of the observation and the second equality assumes the data to

be uniformly sampled at intervals of ∆t (a formula also given in Cuypers 1987; Koen

1999; Montgomery & O’Donoghue 1999). Frequency precision is therefore determined

by the SNR in the time domain, the length of the observation, and the number of data

points. Notice that, for high SNR, frequency precision can greatly surpass the Rayleigh

resolution.
1The topic of Bayesian inference will be dealt with throughout Sect. 2.2.
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Bretthorst (2000, 2001a,b) generalized this Bayesian approach to the periodogram to

a broader range of single-frequency estimation problems (single sinusoid with arbitrary

decay as well as periodic but nonsinusoidal functions) and sampling conditions. An

exact Bayesian expression for p(ν|D, I) was derived that involves a nonlinear processing

of the generalized Lomb-Scargle periodogram analogous to the nonlinear processing of

the Schuster periodogram in Eq. (2.51):

p(ν|D, I) ∝ 1√
C(ν)S(ν)

[
Nx2 − h2

] 2−N
2

. (2.53)

Here, I have recovered the terminology introduced in Sect. 2.1.6, where h2 represents

the generalized Lomb-Scargle periodogram, and the mean-square amplitude of the data

values is defined as

x2 =
1
N

NRe∑
i=1

x2
Re(ti) +

NIm∑
j=1

x2
Im(t′j)

 . (2.54)

The latter formalism is not applicable to stochastic oscillators due to the multiplica-

tive nature of the associated noise. In fact, separation between the deterministic signal

and the noise is not possible in the time domain for stochastically-excited oscillators,

but only in the frequency domain. This same formalism is, however, certainly relevant

to the case of classical pulsators, whose oscillations are periodic but not necessarily

sinusoidal.

2.1.9 Multisine estimation

Fourier-based methods are well suited to the analysis of sinusoidal oscillations. Even

though approaches such as the Lomb-Scargle periodogram (Lomb 1976; Scargle 1982,

1989) and the date-compensated DFT (Ferraz-Mello 1981) take into account sampling

irregularities in the time series, they are only statistically valid in the case of a single

sinusoid present in the data (Foster 1996). If, on the other hand, multiple sinusoids

are present then these are required to be well separated in frequency (Bretthorst 1988),

which is not always the case. So how does one proceed when searching for multiple

sinusoids in the data?

Multisine estimation is usually performed by employing sequential methods. These

methods iteratively remove sinusoidal components from the data while taking into
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account the effect of the window function in a rather straightforward way. Such com-

ponents are identified as the maxima of the Fourier spectrum of the residuals after a

prewhitening step, i.e., after the contributions of previous estimated frequencies have

been removed. This approach is commonly known in the literature as Iterative Sine-

Wave Fitting (ISWF). However, due to the presence of noise peaks and sampling arti-

facts in the Fourier spectrum, these maxima may not correspond to genuine frequen-

cies, thus leading to fatal error propagation. Several refinements of the basic ISWF

procedure have been posteriorly developed that aim at improving its efficiency, most

notoriously the CLEAN algorithm (Roberts et al. 1987), originally introduced in ra-

dio astronomy (Högbom 1974). The CLEAN algorithm as described by Roberts et al.

(1987) introduces a clean gain whereby only a fraction of the sinusoidal component is

removed at each iteration, in an attempt to prevent the propagation of errors resulting

from false detections. Furthermore, since the number of oscillation modes present in the

data is unknown a priori, a stopping rule is needed that associates a confidence level to

the amplitude of each extracted sinusoidal component (e.g., Breger et al. 1993; Reegen

2004). Although these methods are better suited to the analysis of classical pulsators,

they have been successfully employed in the analysis of a number of ground-based ob-

servations of solar-like stars (e.g., Bedding et al. 2004; Kjeldsen et al. 2005; Bedding

et al. 2007b), always under the assumption that the characteristic mode lifetime is

(much) longer than the length of the time series (i.e., that the modes are unresolved).

These methods have also been extensively tested on solar-like artificial data (White

et al. 2010).

Several other methods exist for multisine estimation. One such method, based

on the framework of sparse representations, is suggestively named SparSpec (Bour-

guignon et al. 2007). SparSpec addresses multisine estimation by reconstructing a

high-dimensional vector of spectral amplitudes corresponding to a discrete frequency

grid. A sparse representation of the spectrum is desired, i.e., one with the fewest non-

zero spectral amplitudes, which can be accomplished by minimizing a convex criterion.

In a second article (in preparation) devoted to the solar twin 18 Sco, we compare

several different approaches to frequency estimation, including CLEAN, SparSpec, and

also Lorentzian-profile fitting techniques (see Sect. 2.2.3 for more on the last-mentioned

techniques).
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2.1.10 Wavelet analysis

I cannot come up with a better way of finishing the current section than to present a

tool performing time-frequency analysis, namely, the wavelet transform. The following

discussion is based on the work by Torrence & Compo (1998), who supply a useful guide

to wavelet analysis containing examples of its application in the field of geophysics and

a link to open-source software. In short, a wavelet-based analysis decomposes a time

series into time-frequency space allowing one to determine both the dominant modes

of oscillation and their temporal variability. For us, asteroseismologists, I perceive at

least two novel domains of application for this sort of tool: (i) in assessing whether or

not a given set of modes are stochastically excited (e.g., Belkacem et al. 2009; Antoci

et al. 2011) and (ii) in determining the stellar rotational period from the modulation

of a light curve caused by photospheric spots (e.g., Mathur et al. 2010a; Ballot et al.

2011; Garćıa et al. 2011a).

As a preamble, I should mention the windowed Fourier transform, by which the

Fourier transform of a given time series is performed on a running segment of length T .

This analysis tool is widely used for time-frequency localization, although in a rather in-

accurate and inefficient way, since it imposes a scale T on the analysis. When analysing

a signal possibly containing non-stationary power over a wide range of frequencies, one

should opt instead for a method of time-frequency localization that is independent of

scale, the wavelet transform being such an approach.

Let us start by considering a time series that has been uniformly sampled at intervals

of ∆t, i.e., x(tn) = x(n∆t), with n = 0, 1, 2, . . . , N −1. We also consider a wavelet

function, ψ0(η), which depends on the nondimensional time parameter η, having zero

mean and being localized both in time and in frequency space. A common example of

such a wavelet function is the Morlet wavelet, assumed hereafter, and which consists of

a plane wave modulated by a Gaussian. Finally, the continuous wavelet transform of

the set x(tn) is defined as the convolution of x(tn) with a scaled and translated version

of ψ0(η) that has further been normalized (and so the subscript in ψ0 is dropped):

Wn(s) =
N−1∑
n′=0

x(tn′)ψ∗
[

(n′ − n)∆t
s

]
. (2.55)

Therefore, by varying the wavelet scale1 s and translating along the time index n, one
1Notice that, for the Morlet wavelet, the equivalent Fourier period is given by 1.03s.
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may generate a diffuse two-dimensional time-frequency image of the signal amplitude.

Computation of the wavelet transform is, however, notably faster if done in Fourier

space:

Wn(s) =
N−1∑
p=0

x̂p ψ̂
∗(s ωp) eiωpn∆t , (2.56)

where x̂p is the DFT of x(tn) and ψ̂(s ω) is the Fourier transform of ψ(t/s). The angular

frequency ωp is in turn defined as

ωp =


2πp
N∆t for 0 ≤ p ≤ N/2 ;

− 2πp
N∆t for N/2 < p ≤ N − 1 .

(2.57)

Moreover, a properly normalized wavelet transform satisfies, for each scale s, the fol-

lowing equality (cf. Eq. 2.56):

N−1∑
p=0

|ψ̂(s ωp)|2 = N . (2.58)

The wavelet transform is, therefore, weighted solely by the amplitude of the Fourier

coefficients x̂p and not by the wavelet function itself.

The wavelet power spectrum is then simply given by |Wn(s)|2 (see Fig. 2.4 for an

example). In order to compare wavelet power spectra arising from different time series,

one is obviously interested in finding a common normalization factor. This can be easily

done. From Eqs. (2.56) and (2.58), the expectation value of |Wn(s)|2 is N times that

of |x̂p|2. Assuming a white-noise process, the expectation value of |x̂p|2 is given by1

σ2
0/N , with σ2

0 representing the variance in the time series. Finally, the expectation

value of |Wn(s)|2 is given by σ2
0, and normalization of the wavelet power spectrum by

1/σ2
0 will then provide a measure of the power relative to white noise.

We should not forget that we will always be dealing with finite-length time series

and, since the inverse Fourier transform in Eq. (2.56) assumes the data are cyclic2, this

means that the wavelet power spectrum will be subject to errors at both ends of the

time interval. A way of reducing these edge effects consists in padding the time series

with enough zeros. This will, of course, introduce discontinuities at both endpoints
1In the present discussion, a normalization factor of 1/N is applied to the definition of the DFT in

Eq. (2.9).
2Note that sampling in the frequency domain results in a periodic version of the signal in the time

domain.
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Figure 2.4: Wavelet power spectrum of KIC 9226926 from three months of
Kepler photometry - The top panel displays the light curve of KIC 9226926 obtained
during Quarter 5 (Q5) after being corrected for instrumental perturbations according to
Garćıa et al. (2011b). The light curve has further been high-pass filtered with a cutoff
of 16 days. The corresponding wavelet spectrum is shown on the bottom left-hand panel
for periods ranging from 0.5 to 16 days. A signature of the stellar rotational period (first
harmonic) can be immediately recognized at a period of approximately 2.2 days, being
nearly stationary over the entire observational span. The cone of influence (see discussion
in the text) is represented by the hatched area. The bottom right-hand panel depicts the
so-called global wavelet spectrum (solid line), i.e., the time-averaged wavelet spectrum.
The dotted line represents the 99% confidence level assuming a red-noise background.
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and, as we move to larger scales, the amplitude decrease near the edges will, as a result

of the larger number of included zeros, be more conspicuous. Hence we define the

so-called cone of influence, viz., the region of the wavelet power spectrum where edge

effects are significant, underneath which any reading is dubious. The cone of influence

is determined by the e-folding time of the autocorrelation of wavelet power at each

scale, given by
√

2s for the Morlet wavelet.

Significance levels can be easily computed for wavelet power spectra based on hy-

pothesis testing (these are, however, not displayed in Fig. 2.4). As a first step one needs

to choose an appropriate mean background for the local wavelet power spectrum, de-

fined as a vertical slice through the bottom left-hand panel of Fig. 2.4. This theoretical

background spectrum is usually chosen as being either a white- (constant spectral

density) or a red-noise (spectral density inversely proportional to frequency squared)

spectrum. Moreover, it can be shown that the wavelet power spectrum, |Wn(s)|2,

is distributed as χ2
2. Finally, in order to compute the, say, 95% confidence level for

|Wn(s)|2/σ2
0, one simply has to multiply the theoretical background spectrum by the

95th percentile for 1
2 χ

2
2 at each scale (the 1

2 factor accounts for the degrees of freedom

in χ2
2).

2.2 Statistical inference

2.2.1 Setting the scene: Are you a Bayesian or a frequentist?

This question was posed by Thierry Appourchaux to a few of us, young asteroseismol-

ogists, during a doctoral school that took place in Tenerife in the autumn of 2010. The

audience fell inconveniently silent as if no one had ever given it any thought.

It was a controversy between Ronald Fisher and Harold Jeffreys, dating back to

the first half of the last century, that marked the beginning of two schools of thought

with different views on probability and statistics, namely, that of the frequentists and

that of the Bayesians. The debate between frequentists and Bayesians relates to the

topic of objective versus subjective probabilities. For a frequentist, to whom the laws

of physics are deterministic, the probability of an event is identified with the long-run

relative frequency with which that event occurs in identical repeats of the experiment

or observation. In the frequentist approach probabilities are only assigned to propo-

sitions about random variables. The Bayesian, on the other hand, regards the laws
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of physics as being operational. The Bayesian has recognized that the mathematical

rules of probability are not only suitable for calculating relative frequencies of random

variables, but can also be interpreted as valid principles of logic for directly computing

the probability of any proposition or hypothesis of interest, based on our current state

of knowledge. An excellent presentation of the topic of Bayesian logical data analysis

is given in the book by Gregory (2005).

I leave the skeptical frequentist (presumably) reader with Edwin T. Jaynes’ words

on the topic of objectivity versus subjectivity: “The only thing objectivity requires of

a scientific approach is that experimenters with the same state of knowledge reach the

same conclusion.”

2.2.2 Hypothesis testing

Inferring the truth of one or more hypotheses related to some physical phenomenon is

one of the main goals in science. As a further matter, the information that we have

available is always incomplete, meaning that our knowledge of nature is probabilistic.

Consequently, the funny thing about it is that, due to our state of incomplete infor-

mation, we can never prove any hypothesis is true. Bayesian inference comes to the

rescue by allowing us to directly compute the probabilities of two or more competing

hypotheses based on the current state of knowledge. On the other hand, the frequentist

approach to hypothesis testing is rather indirect. The present discussion on hypothesis

testing is adapted from Appourchaux et al. (2010).

2.2.2.1 Frequentist hypothesis testing

In the frequentist approach, the argument of a probability is restricted to a random

variable. Since a given hypothesis cannot be considered a random variable, the truth of

the hypothesis must be indirectly inferred. Frequentist hypothesis testing thus involves

considering each hypothesis individually and deciding whether to reject that hypothesis

or fail to reject it, based on the computed value of a suitable choice of statistic. In our

case, we will be interested in testing the following two hypotheses:

• H0 or null hypothesis: We observe pure noise;

• H1 or alternative hypothesis: We observe a signal embedded in noise.
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The test based on the H0 hypothesis consists in determining a significance level for

which peaks in the spectrum have a low probability of being due to noise. It thus tests

for the presence of a signal in the data. The test based on the H1 hypothesis, on the

other hand, allows computing the probability that a signal can be detected given its

characteristics.

For a mode with a lifetime much longer than the length of the observation, i.e., a

long-lived mode, it is assumed that we search for a peak that is restricted to a single

frequency bin in the power spectrum. An analytical example based on the detection

of a long-lived mode in a power spectrum (e.g., a g mode in the power spectrum of

the Sun or an unresolved solar/stellar p mode) will guide the reader throughout the

discussion taking place in this and the following section.

Let us start by considering the H0 hypothesis. The statistics of the power spectrum

of a pure noise signal is assumed to be known and taken to be χ2 with 2 degrees of

freedom. I denote by Z the random variable representing the power level in a given

bin, which is observed to take a particular value z (cf. Eq. 2.28). Our choice of statistic

is simply that of Z1. Next we set the false alarm probability or p-value (Scargle 1982),

thus defining the detection threshold zdet:

p = p(Z ≥ zdet|H0) = e−
zdet
〈z〉 . (2.59)

For instance, a confidence level of 95% or, equivalently, a false alarm probability of 5%,

leads to a threshold given by zdet≈3〈z〉. Finally, the probability of having a value of the

statistic at least as extreme as the one observed is computed (the so-called detection

significance). We are now in a position to make a decision: If the observed power level

zobs is greater than zdet, then the H0 hypothesis is rejected; otherwise we fail to reject

the null hypothesis. In the former case, the detection significance, given by pobs =e−
zobs
〈z〉 ,

is quoted. A test based on the H0 hypothesis was used in helioseismology, for example,

by Appourchaux et al. (2000), to impose an upper limit on g-mode amplitudes. A

range of similar tests have been applied by Chaplin et al. (2002) in the search for low-

degree, low-frequency solar p modes making use of 9 years of BiSON data. Figure 2.5

illustrates the application of a test based on the H0 hypothesis to the detection of an

1Such a choice of statistic is not done ad hoc, but can be systematically derived using the Neyman-

Pearson lemma (Neyman & Pearson 1933).
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unresolved solar p mode. Figure 2.6, on the other hand, illustrates the application of a

test based on the H0 hypothesis to the detection of short-lived stellar p modes.

For the H1 hypothesis, the characteristics of both the noise and the sought-after

signal are assumed to be known. A significance level is then set that defines the accep-

tance or rejection of that hypothesis. It was based on the H1 hypothesis that Gabriel

et al. (2002) provided the probability of detecting a pure sine wave with given ampli-

tude in GOLF data. Appourchaux (2004) provides tests based both on the H0 and H1

hypotheses. In that work, a false alarm test for detecting short-lived p modes is defined

and the probability of detecting such modes is given subject to a set of assumptions

about their characteristics.

Decisions based on hypothesis testing are prone to errors. For example, it may

happen that the H0 hypothesis be rejected when true (false positive or type I error)

or accepted when false (false negative or type II error). A type I error is considered to

be more serious1. It is not possible, however, to minimize both the type I and type II

errors. The usual procedure is then to state the maximum size of the type I error that

is tolerable and construct a test procedure that minimizes the type II error. Assuming,

for instance, that one is willing to accept a maximum type I error of 5%, then setting

p=0.05 will minimize the occurrence of a type II error.

The detection significance pobs is often incorrectly regarded as the probability that

H0 is true. The point here is that any particular value of the detection significance may

arise even in the event that the alternative hypothesis is true. The detection significance

instead tells us how likely the observed data are given the null hypothesis and provided

we could repeat our experiment ad infinitum. In the framework of Bayesian inference,

one is not interested in the detection significance but in the posterior probability of

H0, viz., the likelihood that H0 is true given the observed data, p(H0|z). This is the

quantity that we really want to know and its computation will be the subject of the

next section.

2.2.2.2 Bayesian hypothesis testing

A preliminary step should be to formally introduce Bayes’ theorem (Bayes & Price

1763). Let us consider a set of competing hypotheses, {Hi}, assumed to be mutually

1A courtroom analogy would be that the possibility of convicting an innocent party is considered

worse than the possibility of acquitting a guilty party.
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Figure 2.5: Application of a test based on the H0 hypothesis to the detection
of an unresolved solar p mode - The left-hand panel displays the simulated power
spectrum of an isolated low-frequency solar l=0 mode (its true location being marked by
a vertical red dash) normalized to the local background. The mode linewidth was taken
to be one tenth of the bin width and its relative height was rather optimistically set to
10 for illustrative purposes only. The solid horizontal line corresponds to the detection
threshold obtained by setting p= 0.01 in Eq. (2.59). According to Eq. (2.30), the chance
of finding at least one noise spike within the displayed window (containing 200 bins) at
or above this detection threshhold is then of about 87% (with a total of 2 such spikes,
on average, expected to be found). A more conservative approach would be to set to,
say, 10%, the probability of finding at least one spike within the considered window (or
a total of 0.1 spikes on average). This results in p= 0.0005, corresponding to the dashed
horizontal line. The right-hand panel displays the probability density function of the simu-
lated spectral noise (solid curve) and the exponential distribution with unit mean and unit
variance (dashed curve) from which noise samples have been drawn. The significance level
of the Kolmogorov-Smirnov statistic is indicated, telling us how similar the corresponding
cumulative distribution functions are.
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Figure 2.6: Application of a test based on the H0 hypothesis to the detection
of short-lived stellar p modes - In order to keep the discussion as concise as possible,
the problem of detecting short-lived modes in a binned power spectrum has not been
addressed. Nevertheless, an example is given here of the application of a test based on the
H0 hypothesis to the detection of short-lived modes (cf. Appourchaux 2004). What one
may call a probabilistic échelle diagram (i.e., displaying probability instead of power) is
plotted based on a 18-month-long time series of KIC 3427720. The displayed frequencies
come from the analysis of a subseries of only 9 months long with symbol shapes indicating
mode degree: l=0 (circles), l=1 (triangles), and l=2 (squares). A confidence level of, say,
95%, corresponds to a detection threshold such that the probability of finding at least one
noise spike within the whole plotted window is 5%. Confidence levels have been clipped to
a minimum of 90%. The inclusion of an extra 9 months of photometry allows detecting a
few additional modes at the low-frequency range.

exclusive. One should be able to assign a probability, p(Hi|D, I), to each hypothesis,

taking into account the observed data, D, and any available prior information, I, arising

from theoretical considerations and/or previous observations. This is done through

Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) p(D|Hi, I)

p(D|I)
. (2.60)
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The probability of the hypothesis Hi in the absence of D is called the prior proba-

bility, p(Hi|I), whereas the probability including D is called the posterior probability,

p(Hi|D, I). The quantity p(D|Hi, I) is called the likelihood of Hi, p(D|I) being the

global likelihood for the entire class of hypotheses. Bayesian inference thus encodes our

current state of knowledge into a posterior probability concerning each member of the

hypothesis space of interest. Moreover, the sum of the posterior probabilities over the

hypothesis space of interest is unity, and hence one has:

p(D|I) =
∑
i

p(Hi|I) p(D|Hi, I) . (2.61)

It now becomes a trivial exercise to derive an expression for p(H0|z) as a function

of p(z|H0) and p(z|H1) (Berger & Sellke 1987):

p(H0|z) =
p(H0) p(z|H0)

p(H0) p(z|H0) + p(H1) p(z|H1)
, (2.62)

where I believe the nomenclature to be self-explanatory. By setting the prior on H0

as p(H0) = p0, one then necessarily has p(H1) = 1−p0. The adopted value for p0 thus

reflects our prejudice on which hypothesis is more likely to be true. Finally, we obtain

p(H0|z) =
(

1 +
1− p0

p0
L

)−1

, (2.63)

where the likelihood ratio L is defined as:

L =
p(z|H1)
p(z|H0)

. (2.64)

Hereafter, we set p0 =0.5. The prescription of Berger et al. (1997) should then be used

when performing hypothesis testing:

• If L >1, reject H0 and report p(H0|z)=1/(1 + L );

• If L ≤1, accept H0 and report p(H1|z)=1/(1 + L −1).

Furthermore, Sellke et al. (2001) found that p(H0|z) has a lower bound given by

p(H0|z) ≥
(

1− 1
e p ln p

)−1

, (2.65)

where the previously introduced detection significance, given by1 p = e−z, has been

incorporated.
1From now on we drop the subscript in pobs.

87



2. DATA ANALYSIS IN ASTEROSEISMOLOGY

We now recover our analytical example based on the detection of a long-lived mode

in a power spectrum. The likelihood of H0 is simply given by

p(z|H0) = e−z , (2.66)

where we have conveniently set the mean noise level to unity in Eq. (2.28), i.e., 〈z〉=1.

In order to define the likelihood of H1, we assume that there is a peak corresponding

to a long-lived mode. The mode is further assumed to be stochastically excited, being

characterized by a known height H. This is a strong prior. The more realistic case

of a mode with an unknown height is briefly mentioned below. Since the mean noise

level is unity, H can be regarded as the signal-to-noise ratio. We are dealing with

multiplicative noise and a proper expression for p(z|H1) can be found in Moreira et al.

(2005):

p(z|H1) =
1

1 +H
e−z/(1+H) . (2.67)

Finally, after some manipulation, we rewrite Eq. (2.63) as

p(H0|z) =
(

1 +
1

1 +H
p−H/(1+H)

)−1

. (2.68)

It can be easily shown that Eq. (2.68) has a minimum at H=−(ln p+1), where it takes

the value:

pmin(H0|z) =
(

1− 1
e p ln p

)−1

, (2.69)

coinciding with the lower bound given in Eq. (2.65). Take a detection significance of 1%

(i.e., p= 0.01). The odds against H0 will then at most be of about 9 : 1 (cf. Eq. 2.69).

This means that the likelihood of wrongly rejecting H0 (type I error) is considerably

higher than that suggested by the detection significance. This simple example brings to

light a pitfall of frequentist hypothesis testing: the detection significance when rejecting

the H0 hypothesis can lead to the incorrect conclusion that the null hypothesis is unlike

to occur at that level of significance (Appourchaux et al. 2009). In conclusion, it should

be stated that the posterior probability of H0 (Bayesian approach) provides a more

conservative quantification of a detection when compared to the use of the detection

significance (frequentist approach).

In the more realistic case of a mode with an unknown height, the posterior proba-

bility of H0 is instead given by (Appourchaux et al. 2009):

p(H0|z) =
(

1 +
1
Hu

∫ Hu

0

1
1 +H ′

p−H
′/(1+H′) dH ′

)−1

, (2.70)
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where a uniform prior for the mode height in the range [0, Hu] has been considered.

Figure 2.7 displays the behavior of p(H1|z), i.e., 1−p(H0|z), as a function of signal-to-

noise ratio and detection significance p, for modes both with known and with unknown

height. One immediately notices that, for a given p, assuming an unknown mode height

intuitively causes the probability of detecting the mode to decrease for low to moderate

SNR. This effect is reversed at high SNR, when p(H1|z) enters a downward trend, such

trend being more accentuated for a mode with known height. This downward trend is

contrary to our intuition and can be easily explained for the case of a mode with known

height. In fact, our prior assumption of a high SNR is incorrect, viz., it does not find

support in the data. As a consequence, p(H1|z) is penalized. Finally, the likelihood

of wrongly rejecting H0 (type I error) is considerably higher than that suggested by

the value of p (recall discussion above), by a factor that progressively increases as the

detection significance increases (i.e., as the magnitude of p decreases).

Broomhall et al. (2010) provide a comparison of frequentist and Bayesian approaches

in the search for low-frequency p modes and g modes in Sun-as-a-star data. A Bayesian

approach has also been used by Deheuvels et al. (2010) who, based upon posterior

probability estimates, made decisions concerning the presence of l=3 modes and mixed

modes in the power spectrum of the CoRoT target HD 49385.

2.2.3 Parameter estimation

2.2.3.1 Modeling the power spectrum

The very first step in such a parameter estimation problem consists in defining an

appropriate model of the limit power spectrum. The model will be denoted by P(ν; λ),

being described by a set of parameters λ which contain the desired information on the

physical processes at play. As I have already noted, the power spectrum is distributed

around this limit (or mean) spectrum with an exponential distribution (see Sects. 1.4.1

and 2.1.5, as well as Eq. 2.76 below).

Neglecting any asymmetries in the mode profiles, we have seen that the mean spec-

trum of a single stochastically-excited mode follows a standard Lorentzian profile near

the resonance (cf. Eq. 1.28):

M (ν;H, ν0,Γ) =
H

1 +
[

2(ν−ν0)
Γ

]2 , (2.71)
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Figure 2.7: Posterior probability of detecting a stochastically-excited long-lived
mode - The posterior probability of H1, i.e., 1−p(H0|z), is shown as a function of signal-
to-noise ratio and detection significance p, for modes both with known (via Eq. 2.68; solid
lines) and with unknown height (via Eq. 2.70; dashed lines).

where H is the mode height, ν0 is the mode frequency, and Γ is the mode linewidth.

Assuming energy equipartition between multiplet components with different azimuthal

order, one may define the following overall profile for a (n, l) multiplet:

Mnl(ν;Hnl, νnlm,Γnlm, i) =
l∑

m=−l
Elm(i) M (ν;Hnl, νnlm,Γnlm) , (2.72)

where the Elm(i) coefficients are given by Eq. (1.23). We have seen in Sect. 1.3.5 how

departures from spherical symmetry, particularly when caused by rotation, will lift the

degeneracy of the mode frequency νnl.

We are primarily interested in performing a so-called global fit (e.g., Appourchaux

et al. 2008) to the observed power spectrum, whereby several radial orders are fitted
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simultaneously within a broad frequency range1. Therefore, one ends up modeling the

limit acoustic power spectrum according to the following general relation:

P(ν; λ) =
∑
n

∑
l

l∑
m=−l

Elm(i)Hnl

1 +
[

2(ν−νnlm)
Γnlm

]2 + Sbg(ν) +B , (2.73)

where Sbg(ν) has been introduced to describe the background signal (of both instrumen-

tal and stellar origin), while B is used to represent the photon shot noise. Depending

on the model used, different assumptions are possible that concern the mode and back-

ground parameters, which may be extremely useful in order to reduce the dimension

of parameter space (e.g., Handberg & Campante 2011).

The stellar background signal results from the superposition of several components

related to activity, different scales of granulation, and even faculae. It may be modeled

as (e.g., Harvey 1985; Harvey et al. 1993; Aigrain et al. 2004; Karoff 2012):

Sbg(ν) =
∑
j

Hj

1 + (2πντj)aj
, (2.74)

where Hj is the height in the power spectrum at ν = 0, τj is the characteristic time

of the decaying autocorrelation function of the process, and aj determines the slope

of this so-called Harvey-like profile. Such functional form is representative of a ran-

dom non-harmonic field whose autocorrelation decays exponentially with time. The

original model by Harvey (1985), having aj =2, failed to reproduce the observed solar

background signal above the acoustic cut-off frequency. Harvey et al. (1993) refined

the original model by letting aj be a free parameter and thus solved the misfit at high

frequencies. The exponent aj calibrates the amount of memory in the process and there

is no physical reason why its value should be fixed or even the same for different compo-

nents. Furthermore, Karoff (2012) argues that the slope of a given component should

be different at low and high frequencies based on physical arguments. The instrumental

background signal, being also a 1/f -noise process, may just as well be incorporated in

Eq. (2.74).

An important remark should be made at this stage on how we model the mode

heights. Once again assuming energy equipartition between multiplet components with

1Conversely, pseudo-global (or local) fitting (e.g., Jiménez-Reyes et al. 2008) is an approach tradi-

tionally adopted for Sun-as-a-star data, whereby narrow frequency windows are considered at a time.
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different azimuthal order, their heights may be expressed as:

Hnlm = Elm(i)Hnl = Elm(i)S2
l αnl , (2.75)

where Sl is the spatial response function introduced in Sect. 1.3.2, and the factor

αnl≈α(νnl) depends mainly on the frequency. This relation, however, is only strictly

valid under one assumption: When the stellar flux is integrated over the full apparent

disk, one must assume that the weighting function giving the contribution of a surface

element to the integral is a function of the distance to the disk center alone. In that

case, the apparent mode amplitude can effectively be separated into two factors: Elm(i)

and S2
l . This assumption holds very well in the case of intensity measurements, since

the weighting function is then mainly linked to the limb darkening, whereas for velocity

measurements departures might be observed due to asymmetries in the velocity field

induced by rotation (e.g., Ballot et al. 2006). As a means to reduce the number of

parameters in our model, the heights of non-radial modes are commonly defined based

on the heights of radial modes according to Eq. (2.75) and taking into account the

Sl/S0 ratios as given in Table 1.1.

The final model should be given by the convolution of the model in Eq. (2.73)

with the power spectral window normalized to unit total area (Anderson et al. 1990),

therefore taking into account the redistribution of power caused by gaps in the data.

Inclusion of this last step may result in a computationally demanding implementation

of the fitting problem, especially when using Monte Carlo techniques, and therefore

should be well pondered.

2.2.3.2 Maximum Likelihood Estimation

In the case of a power spectrum of a solar-like oscillator, for which measurement errors

are not normally distributed, one should employ the concept of Maximum Likelihood

Estimation (MLE), thereby determining estimates of the parameters λ describing the

model P(ν; λ) that maximize the likelihood of the observed power spectrum. As an

example, a fit to the power spectrum of α Cen A obtained with WIRE (Fletcher et al.

2006) is displayed in Fig. 2.8. It should be noted that this methodology is not equivalent

to a traditional least-squares minimization problem, where it is implicitly assumed that

the measurement errors are normally distributed.
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The use of MLE for fitting solar power spectra was first mentioned by Duvall &

Harvey (1986), being later applied and tested by Anderson et al. (1990). It has now

been in use by helioseismologists for more than 20 years and has been applied in the

analysis of low-degree modes as well as of medium- and high-degree modes (e.g., Schou

1992; Toutain & Appourchaux 1994; Appourchaux et al. 1998; Chaplin et al. 2006). As-

teroseismologists, myself included, are now increasingly adopting this and other related

approaches. As Sir Isaac Newton would say, we stand on the shoulders of giants.

I start by introducing the probability density function (pdf) at frequencies separated

by 1/T , T being the length of the observation (Duvall & Harvey 1986):

f(Pj ; λ) =
1

P(νj ; λ)
exp

[
− Pj

P(νj ; λ)

]
, (2.76)

where Pj is the observed power spectrum at frequency channel j. This equation is

nothing but the χ2
2 distribution scaled to the limit spectrum. As we have seen, an

average power spectrum instead obeys a χ2 probability distribution with 2k degrees of

freedom, k being the number of combined spectra. In that case one has (Appourchaux

2003):

f(Pj ; λ) =
kk−1

(k − 1)!
P k−1
j

Pk(νj ; λ)
exp

[
− kPj

P(νj ; λ)

]
. (2.77)

The next step is to specify the likelihood function, i.e., the joint pdf for the data

sample {Pj}. Assuming that the frequency bins are uncorrelated, the joint pdf is simply

given by the product of f(Pj ; λ) over some frequency interval of interest spanned by j:

L(λ) =
N∏
j=1

f(Pj ; λ) . (2.78)

In spite of Eq. (2.78) being valid for an uninterrupted data set, the same is not true

when gaps are present in the time series. In that event, Stahn & Gizon (2008) have

derived an expression for the joint pdf of solar-like oscillations in complex Fourier

space, in agreement with the earlier work of Gabriel (1994). The last-mentioned pdf

explicitly takes into account frequency correlations introduced by the convolution with

the spectral window.

The basic idea behind MLE is to determine estimates λ̃ so as to maximize the like-

lihood function of the observed power spectrum. Due to improved numerical stability,
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however, it is more convenient to work with logarithmic probabilities. In practice, one

ends up minimizing

`(λ) ≡ − lnL(λ)

=
N∑
j=1

{
ln P(νj ; λ) +

Pj
P(νj ; λ)

}
, (2.79)

where Eq. (2.76) has been used in conjunction with Eq. (2.78). Symbolically, one thus

has:

λ̃ = arg min
λ
{`(λ)} . (2.80)

Finding the parameters λ̃ that minimize `(λ) may in principle be accomplished by

employing, for instance, Powell’s algorithm (Powell 1964). However, things are not

that simple. Owing to the nonlinearity of the fitting problem in hand and to the large

number of model parameters, one expects the likelihood to be multimodal. The risk

of attaining a local minimum is real and further enhanced by the proneness of most

standard algorithms to the initial guess parameters. Nevertheless, hope is not lost,

since more sophisticated algorithms, such as Markov chain Monte Carlo techniques

(see next section), are available.

The method of MLE possesses a number of attractive asymptotic properties (e.g.,

Kendall & Stuart 1979). Accordingly, in the limit of a very large sample (i.e., N→∞),

the estimator λ̃ is unbiased:

lim
N→∞

E
[
λ̃
]

= λ0 , (2.81)

where λ0 is the true parameter value. Moreover, the Cramér-Rao lower bound (Rao

1945; Cramér 1946) is reached:

lim
N→∞

cov
[
λ̃
]

= I−1(λ0) , (2.82)

where I(λ) is the Fisher information matrix whose elements are given by

iuv = E
[
∂2`(λ)
∂λu∂λv

]
. (2.83)

This means that no other asymptotically unbiased estimator has lower variance (minimum-

variance unbiased estimator). Finally, the estimator λ̃ is asymptotically normally dis-

tributed with mean λ0 and covariance matrix I−1(λ0).
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Nonetheless, the world we live in is finite and hence there is no guarantee that

the estimator λ̃ will be normally distributed or even unbiased. Assuming that λ̃ is

approximately normally distributed, the covariance matrix is then given by the inverse

of the Hessian matrix, H−1(λ), computed at λ̃. The elements of H(λ) are given by:

huv =
∂2`(λ)
∂λu∂λv

. (2.84)

The so-called formal error bars on λ̃ are given by the diagonal elements of the inverse of

the Hessian matrix. Furthermore, the covariance matrix obeys the following inequality:

cov
[
λ̃
]

=H−1(λ̃) ≥ I−1(λ0) , (2.85)

meaning that the precision to which we can estimate λ̃ is fundamentally limited by the

Fisher information matrix.

Monte Carlo simulations. The considerations in the previous paragraph suggest

that one should run Monte Carlo simulations on synthetic data as a means of validating

the method (e.g., Anderson et al. 1990; Schou & Brown 1994; Toutain & Appourchaux

1994; Appourchaux et al. 1998; Gizon & Solanki 2003; Ballot et al. 2006, 2008). This is

accomplished by fitting a large number of simulated realizations of a power spectrum

in order to obtain the distributions of the fitted model parameters. Monte Carlo sim-

ulations enable us not only to determine the bias and precision associated with each

parameter but also to assess the correlations between parameters. Besides, a matter

of the utmost importance is the calibration of error bars. The procedure consists in

calibrating the formal error bars such that the standard deviation of a given fitted

parameter as obtained from Monte Carlo simulations equals the mean of the formal

errors returned by the inverse Hessian, i.e., H(λ̃) ≈ I(λ0).

Having defined a theoretical Hessian, Toutain & Appourchaux (1994) derived the

following analytical expression for the frequency precision of a single p mode:

σν = f(β)

√
Γ

4πT

=

√√
β + 1

(√
β + 1 +

√
β
)3
√

Γ
4πT

, (2.86)

where β is the noise-to-signal ratio as before, and f(β) is close to unity when β

approaches 0. This is the same result as obtained in Libbrecht (1992). Equation
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(2.86) is to be compared with Eq. (2.52) for a pure sine wave. Assuming white noise,
√
β∼σ/(A

√
N) in the latter equation. Consequently, as the amplitude increases, the

frequency precision of long-lived modes increases while that of short-lived modes reaches

a limit. From Eq. (2.86) it becomes apparent that once a mode is resolved, and thus β

cannot be improved with time (recall Eq. 2.32), frequency precision is expected to scale

with the square root of time, i.e., σν∝T−1/2. This differs from the relation σν∝T−3/2

found in Eq. (2.52). Figure 2.9 displays the behavior of the frequency precision achiev-

able for a stochastically-excited p mode as the length of the observation is increased.

A transition between the unresolved (T � 2τ) and resolved (T � 2τ) regimes can be

clearly seen.

Toutain & Appourchaux (1994) have also computed theoretical error bars for other

parameters. To validate the approach, the theoretical precisions derived in their work

were compared with those obtained from Monte Carlo simulations. Just like Anderson

et al. (1990) before them, the authors realized that the amplitude, the linewidth, and

the background noise tend to have a log-normal distribution. They suggest fitting the

natural logarithm of these parameters instead, in order to derive meaningful error bars

from the inverse of the Hessian.

I would also like to highlight a series of very instructive articles that have devoted

particular attention to the issue of fitting the inclination of the rotation axis, i, and

the rotational splitting1, νs, of solar-like stars. Making use of extensive Monte Carlo

simulations, Gizon & Solanki (2003) estimated the precision of the measurement of

i. They found that the inclination angle can be retrieved accurately when i& 30◦ for

stars rotating at least twice as fast as the Sun that have been observed for 6 months,

having further assumed solar linewidths. An extension of this analysis is provided by

the same authors in Gizon & Solanki (2004), where they conclude that information can

be obtained about the latitudinal differential rotation from observations of dipole and

quadrupole modes, depending on the value of the mean rotation and on the inclination

of the rotation axis. Ballot et al. (2006, 2008) emphasize the difficulties found when

fitting these two quantities in the case of slow rotators, for which the splitting is com-

parable to the mode linewidth, thus leading to blending of the multiplet components.

They explore in depth the correlations between the two parameters (see Fig. 2.10 for

an example).

1In the asymptotic regime one has νs'〈Ω〉nl/(2π) in Eq. (1.22).
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Figure 2.9: Frequency precision of a stochastically-excited p mode as a function
of the length of the observation - Use has been made of Eq. (2.86) to compute the
frequency precision. The definition of β entering that equation depends on whether or
not the mode is resolved and is taken from Eq. (2.32). The dotted and dashed curves
respectively represent the behavior of frequency precision in the unresolved and resolved
regimes. Moreover, a more general expression, covering these two extreme regimes as well
as the intermediate regime, has been computed for the frequency precision via Eq. (1.41)
and is shown as a solid curve. The rms noise, σ0, per ∆t=58.85s integration, was computed
according to the empirical minimal-term model for the noise presented in Gilliland et al.
(2010b) assuming a Kepler apparent magnitude of Kp = 10. The mode has a typical
solar linewidth of 1 µHz and a rms amplitude Arms = 2.68 ppm, which corresponds to the
maximum solar rms velocity amplitude of 0.16 m s−1 according to Eq. (1.34).

Parameter significance and the likelihood ratio. The discussion about MLE

is not yet complete as one question still remains unanswered: How can one test the

statistical significance of the fitted parameters? This can be done by employing the
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Figure 2.10: Correlation between maximum likelihood estimates of the incli-
nation i and splitting νs - The likelihood function for a simulated spectrum is shown in
the plane (i, νs) of the space of parameters (notice that a different nomenclature is used for
the splitting than the one in the text). Lighter tones correspond to higher likelihood and
solid curves represent contours of constant likelihood. The cross (×) marks the input pair
(i0, νs0) while the plus sign (+) marks the maximum of the likelihood. A clear correlation
is seen between the two parameters whose values are organized along the dashed curve
defined by νs sin i=νs0 sin i0. From Ballot et al. (2006).

so-called likelihood ratio test (Appourchaux et al. 1998). First, one starts by maxi-

mizing the likelihood L(λp) of the observed spectrum, where p parameters were used

to construct the model. If one intends to model the same observed spectrum with n

additional parameters, then the likelihood L(λp+n) has to be maximized. The natural

logarithm of the likelihood ratio L (cf. Eq. 2.64) is then given by:

ln L = lnL(λp)− lnL(λp+n)

= `(λp+n)− `(λp) . (2.87)

Clearly, when L � 1 one has reasons to believe that the additional parameters are
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indeed significant. To assess how significant they are, an hypothesis test called likeli-

hood ratio test may be performed. The null hypothesis is stated as: The n additional

parameters are not needed to model the observed spectrum. Taking comfort in the

knowledge that the statistical test −2 ln L approximately follows a χ2 distribution

with n degrees of freedom under the null hypothesis (Wilks 1938), one then proceeds

with the computation of the detection significance (recall Sect. 2.2.2.1 for its definition).

Karoff (2012) employs the likelihood ratio test to assess the statistical significance

of a facular component in power spectra of the Sun, having made use of 13 years of

observations carried out by the VIRGO/SPM instrument. Figure 2.11 portrays the

case of KIC 6603624, a main-sequence star exhibiting solar-like oscillations, for which

the statistical significance of a facular component is over the 99.9% level according to

the likelihood ratio test.

A rather interesting work on the reliability of the likelihood ratio when applied to

mode identification (i.e., tagging of modes by degree l) in solar-like stars is presented in

Salabert et al. (2010). It was also based on the likelihood ratio that Appourchaux et al.

(2008) computed the posterior probabilities of the two competing mode identification

scenarios in a study of the CoRoT F5 main-sequence star HD 49933. Their calculations

were done in a way similar to the procedure outlined in Sect. 2.2.2.2, hence providing

the statistical significance of either scenario. Mode identification was made difficult due

to the conjugation of two factors, namely, a mode linewidth larger than solar together

with a small frequency separation narrower than in the Sun. As a result, the l= 0, 2

and l=1 ridges were indistinguishable from one another. This has been coined the “F

star problem” (Bedding 2011), which is also a problem in, e.g., Procyon (Bedding et al.

2010b; Bedding & Kjeldsen 2010) and θ Cyg (see Fig. 2.12). Notoriously, the preferred

mode identification of Appourchaux et al. (2008) was proved to be wrong as soon as a

longer time series became available for analysis (see Sect. 3.2.1; Benomar et al. 2009b).

To be fair, it should be stressed that Appourchaux et al. (2008) were already envisaging

the inclusion of prior knowledge through a full Bayesian approach as the next logical

step to take. This would have saved the authors from all the controversy (Benomar

et al. 2009a). Bayesian parameter estimation, including the analogous problem of model

comparison, are the subjects of the next section.
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Figure 2.11: Presence of a facular signal in the power spectrum of KIC 6603624
- The power spectrum (black) has been computed from twelve months of Kepler photometry
(Q5 to Q8). A smoothed version of the power spectrum (yellow) is also shown in order
to visually enhance the acoustic signal centered at about 2.5 mHz. Besides a Gaussian
component used to describe the p-mode power-excess hump (e.g., Kallinger et al. 2010b)
and a flat component representing white noise, the background model also included both a
granular and a facular signal (bottom panel) or else only a granular signal (top panel). The
characteristic timescales (τgran and τfac) and slopes (agran and afac) of the corresponding
Harvey-like profiles are indicated (cf. Eq. 2.74). The latter have been fixed to their solar
values according to Karoff (2012).
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Figure 2.12: Échelle diagram of the power density spectrum of θ Cyg - θ Cyg
is a very bright F-type dwarf. It has been observed with Kepler throughout Quarter 8
(Q8) using a special photometric mask. The resulting power density spectrum is shown in
grayscale. Symbols in red represent the individual frequencies obtained from a provisional
fit to the power spectrum using a regularized version of the MLE algorithm (or MAP;
see discussion in the next section). Symbol shapes indicate mode degree: l= 0 (circles),
l = 1 (triangles), and l = 2 (squares). Identification of the ridges from a simple visual
inspection is far from evident. Another fit was performed assuming the alternative mode
identification scenario. The plotted scenario was found to be statistically more likely based
on the computation of the likelihood ratio, although not in a decisive way (only by a factor
of ∼3.7). At the time of writing a debate is still ongoing as to which is the correct scenario.
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2.2.3.3 Bayesian parameter estimation using MCMC

The first attempt at applying a Bayesian approach to parameter estimation in aster-

oseismology is due to Brewer et al. (2007). However, their use of a time-based model

consisting of pure sine waves incorrectly models the stochastic excitation of an harmonic

oscillator. They have since improved their approach by considering damped oscillations

and by modeling the asteroseismic data as a Gaussian process (Brewer & Stello 2009).

It would then be the controversy surrounding the early work of Appourchaux et al.

(2008) on HD 49933 to trigger the development of several Bayesian data analysis tools

(Benomar et al. 2009a; Gruberbauer et al. 2009; Handberg & Campante 2011).

Herein, I highlight the main features of a Bayesian peak-bagging1 tool that employs

Markov chain Monte Carlo (MCMC) techniques. The following discussion is adapted

from Handberg & Campante (2011), where the reader will find a comprehensive guide

to the implementation of such a peak-bagging tool. This is unquestionably one of my

main contributions to the field and, for that reason, the aforementioned article can be

found as a supplement in Appendix D.

This tool is to be applied to the power spectra of solar-like oscillators and used as a

means to infer both individual oscillation mode parameters and parameters describing

non-resonant features. Besides making it possible to incorporate relevant prior informa-

tion through Bayes’ theorem, this tool also allows obtaining the marginal probability

density function for each of the model parameters. Moreover, it provides larger error

bars on the parameters than does MLE, thus making it a more conservative approach.

Handberg & Campante (2011) apply this tool to a couple of recent asteroseismic data

sets, namely, to CoRoT observations of HD 49933 and to ground-based observations of

Procyon.

Having set up the model of the power spectrum in Sect. 2.2.3.1, I will start by

introducing the Bayesian statistical framework to be used for estimating the model

parameters and for comparing the merits of competing models. In the meantime,

the reader should recall Eqs. (2.60) and (2.61), where Bayes’ theorem was formally

introduced and a posterior probability p(Hi|D, I) was assigned to each member of the

hypothesis space of interest, denoted by {Hi}.
1The term “peak-bagging”, coined by Jesper Schou, a keen mountain climber, refers in the present

context to the analysis of individual oscillation peaks in the power spectrum.

103



2. DATA ANALYSIS IN ASTEROSEISMOLOGY

Parameter estimation. Very often, a particular hypothesis, i.e., a given model

M of the power spectrum, is assumed true and the hypothesis space of interest then

concerns the values taken by the model parameters λ. These parameters are continuous,

meaning that one will be interested in their probability density functions. The global

likelihood of model M is then given by the continuous counterpart of Eq. (2.61):

p(D|I) =
∫
p(λ|I) p(D|λ, I) dλ . (2.88)

Computation of the global likelihood is rather complex, but can be achieved rather

straightforwardly by using the Metropolis-Hastings algorithm under parallel tempering

(e.g., Gregory 2005; Handberg & Campante 2011).

We may also want to restate Bayes’ theorem in order to account for this new for-

malism:

p(λ|D, I) =
p(λ|I) p(D|λ, I)

p(D|I)
. (2.89)

The terms entering this equation have exactly the same meaning as the corresponding

terms entering Eq. (2.60). As a result, p(D|λ, I) is nothing but the likelihood function

L(λ) as given in Eq. (2.78). We are ultimately interested in using MCMC techniques

to map the posterior pdf given by Eq. (2.89). This approach is exceedingly more

powerful than the Bayesian point-estimation method of Maximum A Posteriori (MAP;

e.g., Gaulme et al. 2009). The MAP approach can in fact be regarded as a regularized

version of the frequentist MLE, also a point-estimation method. Drawing a parallelism

with Eq. (2.80), one has symbolically:

λ̃MAP = arg max
λ
{p(λ|I)L(λ)} . (2.90)

One of the main advantages of a Bayesian approach when compared to a frequentist

approach resides in the fact that the posterior pdf, p(λ|D, I), is directly accessed, and

not only the likelihood function. Moreover, the use of MCMC techniques to map the

posterior pdf clearly supersedes the MLE approach, which only provides the location

of the maximum of the likelihood. Another main advantage provided by the Bayesian

framework is the ability to incorporate relevant prior information through Bayes’ the-

orem and evaluate its effect on our conclusions. When basing the fitting/detection

problem upon a priori theoretical knowledge, its outcome will effectively be restricted

to what one can imagine or conceive (Appourchaux 2008). This is particularly use-

ful when fitting a model to an acoustic power spectrum exhibiting low SNR in the p
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modes, a scenario where frequentist approaches tend to break down. Gregory (2005)

provides useful insight on the use and effect of the prior in the framework of Bayesian

data analysis.

The procedure of marginalization makes it possible to compute the marginal pos-

terior pdf for a subset of parameters λA by integrating over the remaining parameters

λB, the so-called nuisance parameters:

p(λA|D, I) =
∫
p(λA,λB|D, I) dλB . (2.91)

Furthermore, assuming that the prior on λA is independent of the prior on λB, then

by applying the product rule one has:

p(λA,λB|I) = p(λA|I) p(λB|λA, I) = p(λA|I) p(λB|I) . (2.92)

In practice, one will be working with logarithmic probabilities. The global likelihood

of the model plays the role of a normalization constant and we rewrite Eq. (2.89) as

follows:

ln p(λ|D, I) = const.+ ln p(λ|I)− `(λ) , (2.93)

where `(λ) is given by Eq. (2.79).

Model comparison. As we will see below, the problem of model comparison is

analogous to that of parameter estimation. When facing a situation in which sev-

eral parameterized models are available for describing the same physical phenomenon,

one expects Bayes’ theorem to allow for a statistical comparison between such mod-

els. Bayesian model comparison has a built-in Occam’s razor, a principle also known

as lex parsimoniae, by which a complex model is automatically penalized, unless the

available data justify its additional complexity. Notice that these competing models

may be either intrinsically different models or else similar but with varying number of

parameters (i.e., nested models), or even the same model with different priors affecting

its parameters.

Given two or more competing models and our prior information, I, being in the

current context that one and only one of the models is true, we can assign individual

probabilities similarly to what has been done in Eq. (2.60), after replacing Hi by Mi:

p(Mi|D, I) =
p(Mi|I) p(D|Mi, I)

p(D|I)
, (2.94)
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Table 2.1: Jeffreys’ scale - The usual scale by which to judge the evidences of two
competing models.

lnBij Strength of evidence

< 1 Not worth more than a bare mention
1–2.5 Significant
2.5–5 Strong to very strong
> 5 Decisive

where the global likelihood of model Mi, p(D|Mi, I), also called the evidence of the

model, is given by Eq. (2.88). As stated above, after comparison of Eqs. (2.89) and

(2.94), one realizes that the problem of model comparison is indeed analogous to the

problem of parameter estimation.

Of particular interest is the computation of the ratio of the probabilities of two

competing models:

Oij ≡
p(Mi|D, I)
p(Mj |D, I)

=
p(Mi|I) p(D|Mi, I)
p(Mj |I) p(D|Mj , I)

=
p(Mi|I)
p(Mj |I)

Bij , (2.95)

where Oij is the odds ratio in favor of model Mi over model Mj , Bij is the so-called

Bayes’ factor, and p(Mi|I)/p(Mj |I) is the prior odds ratio. The Bayesian odds ra-

tio closely resembles the frequentist likelihood ratio discussed in the previous section.

However, the former ratio is the product of the ratio of the prior probabilities of the

models and the ratio of their global likelihoods, in contrast to the ratio of point-like

probability estimates in the latter case. Computation of Oij is thus a means of assess-

ing, for instance, which of two mode identification scenarios is statistically more likely

(e.g., Benomar et al. 2009a; Bedding et al. 2010b; Handberg & Campante 2011). It is

usual to assume that one has no prior information impelling us to prefer one model

over the other, and in that case one sets p(Mi|I)/p(Mj |I)=1. This assumption should,

however, be used with great care, especially when dealing with nested models which is

often the case (e.g., Scott & Berger 2010). One is now in need of a scale by which to

judge the ratio of the evidences of two competing models. The usual scale employed is

Jeffreys’ scale (Jeffreys 1961), which is displayed in Table 2.1 for convenience.

Moreover, the Bayesian framework makes it possible to extract parameter con-

straints even in the presence of model uncertainty, i.e., when the implementation of
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model selection has not been successful. This is done by simply combining the prob-

ability distribution of the parameters within each individual model, weighted by the

model probability. This procedure, called Bayesian model averaging (e.g., Liddle 2009),

is an analog of the superposition of eigenstates of an observable in quantum mechanics.

Markov chain Monte Carlo. After inspection of Eq. (2.91), the need becomes

clear for a mathematical tool that is able to efficiently evaluate the multidimensional

integrals required in the computation of the marginal distributions. This constitutes

the rationale behind the method known as Markov chain Monte Carlo, first introduced

in the early 1950s by statistical physicists and nowadays extensively used in all areas

of science and economics.

The aim is to draw samples from the target distribution, p(λ|D, I), by constructing

a pseudo-random walk in parameter space such that the number of samples drawn from

a particular region is proportional to its posterior density. Such a pseudo-random walk

is attained by generating a Markov chain, whereby a new sample, λt+1, depends on

the previous sample, λt, according to a time-independent quantity called the transition

kernel, p(λt+1|λt). After a burn-in phase, p(λt+1|λt) is able to generate samples of λ

with a probability density converging on the target distribution.

An algorithm widely employed to generate a Markov chain was initially proposed

by Metropolis et al. (1953), and subsequently generalized by Hastings (1970), this

latter version being commonly referred to as the Metropolis-Hastings algorithm. It

works in the following way: Suppose the current sample, at some instant denoted by

t, is represented by λt. We would like to steer the Markov chain toward the next

sampling state, λt+1, by first proposing a new sample to be drawn, ξ, from a proposal

distribution, q(ξ|λt), that can have almost any form. Here, I specifically treat q(ξ|λt)
as being a multivariate normal distribution with covariance matrix Σ. The proposal

distributions for the individual parameters are further assumed to be independent,

meaning that Σ is diagonal. The proposed sample is then accepted with a probability

given by:

α(λt, ξ) = min(1, r) = min
[
1,
p(ξ|D, I)
p(λt|D, I)

q(λt|ξ)
q(ξ|λt)

]
, (2.96)

where α(λt, ξ) is the acceptance probability and r is called the Metropolis ratio. In

the present case q(λt|ξ) = q(ξ|λt), since the proposal distribution is symmetric. As a

result, if the posterior density for the proposed sample is greater than or equal to that
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of the current sample, i.e., p(ξ|D, I)≥ p(λt|D, I), then the proposal will be accepted,

otherwise it will be accepted with a probability given by the ratio of the posterior

densities. If ξ is not accepted, then the chain will keep the current sampling state,

i.e., λt+1 = λt. The procedure just described is repeated for a predefined number of

iterations or, alternatively, for a number of iterations determined by a convergence test

applied to the Markov chain.

Once the posterior pdf, p(λ|D, I), has been mapped, the procedure of marginal-

ization becomes trivial. The marginal posterior distribution of a given parameter λ,

p(λ|D, I), is then simply obtained by collecting its samples in an histogram and further

normalizing it. An estimate of the kth moment of λ about the origin is then given by

〈λk〉 ≡
∫
λk p(λ|D, I) dλ ≈ 1

Nit

∑
t

λkt , (2.97)

where Nit is the total number of samples.

Automated MCMC and parallel tempering. The basic Metropolis-Hastings

algorithm outlined above can be refined by incorporating a statistical control system

that allows to automatically fine-tune the proposal distribution during the burn-in

phase. Moreover, inclusion of parallel tempering will increase the mixing properties of

the Markov chain and consequently reduce the risk of the algorithm becoming stuck in

a local mode of the target distribution. The reader is referred to Handberg & Campante

(2011) for how to implement these two features. Here, I only give a brief summary.

The basic Metropolis-Hastings algorithm runs a serious risk of becoming stuck in a

local mode of the target distribution, thus failing to fully explore all regions of param-

eter space containing significant probability. A way of overcoming this difficulty is to

employ parallel tempering (e.g., Earl & Deem 2005), whereby a discrete set of progres-

sively flatter versions of the target distribution is created by introducing a temperature

parameter, T. In practice, use is made of its reciprocal, γ = 1/T, referred to as the

tempering parameter. We modify Eq. (2.89) to generate the tempered distributions as

follows:

p(λ|D, γ, I) = C p(λ|I) p(D|λ, I)γ , 0 < γ ≤ 1 , (2.98)

where C is a constant. For γ = 1, we retrieve the target distribution, also called the

cold sampler, while for γ<1, the hotter distributions are effectively flatter versions of

the target distribution. By running such a set of chains in parallel (nγ in total) and
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further allowing the swap of their respective parameter states, we enable the algorithm

to sample the target distribution in a way that makes possible both the investigation of

its overall features (low-γ chains) and the examination of the fine details of a local mode

(high-γ chains). Figure 2.13 provides a pseudocode version of the Metropolis-Hastings

algorithm with the inclusion of parallel tempering.

Based on a statistical control system similar to the one described in Gregory (2005),

we may automate the process of calibration of the Gaussian proposal σ values, which

specify the direction and step size in parameter space when proposing a new sample

to be drawn. The optimal choice of {σ} is closely related to the average rate at which

proposed state changes are accepted, the so-called acceptance rate. The control system

makes use of an error signal to steer the selection of the σ values during the burn-in

phase of a single parallel tempering MCMC run, acting independently on each of the

tempered chains. The error signal is proportional to the difference between the current

acceptance rate and a target acceptance rate. As soon as the error signal for each of

the tempered chains is less than a measure of the statistical fluctuation expected for

a zero-mean error, the control system is turned off and the algorithm switches to the

standard parallel tempering MCMC.

2.3 Getting practical: a pipeline for Kepler

In the past few years, considerable effort has been invested in making preparations

for the mode parameter analysis of Kepler data. This analysis involves the estimation

of individual and global oscillation mode parameters, as well as estimation of param-

eters describing non-resonant signatures of convection and activity. An example of

such an effort is the work conducted in the framework of the AsteroFLAG consortium

(Chaplin et al. 2008a) which followed from the earlier work undertaken by the CoRoT

data analysis team (Appourchaux et al. 2006a,b). This naturally paved the way for

the development of a number of automated pipelines to measure global asteroseismic

parameters of solar-like oscillators (Huber et al. 2009; Mosser & Appourchaux 2009;

Roxburgh 2009a; Campante et al. 2010b; Hekker et al. 2010; Karoff et al. 2010; Mathur

et al. 2010b; Verner & Roxburgh 2011).

In order to fully characterize a star using asteroseismology, it is desirable to have

accurate estimates of individual p-mode parameters. These include the frequencies,
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amplitudes, and lifetimes of a large number of modes for which the angular degree l

and radial order n have been identified. However, this is only possible for data above a

certain signal-to-noise level. Global asteroseismic parameters, indicative of the global

structure, are on the other hand readily obtainable using automated analysis methods

that can incorporate data with a lower SNR and for which a full peak-bagging analysis

is not always possible. Furthermore, the automated nature of these pipelines is required

if we are to efficiently exploit the plenitude of data made available by Kepler on these

targets. A thorough comparison of complementary analysis methods used to extract

global asteroseismic parameters of main-sequence and subgiant solar-like oscillators is

presented in Verner et al. (2011b) (see Sect. 3.3.1).

I have been personally involved in the development of two such automated pipelines,

namely, the KAB and the AAU pipelines, as they are known internally. The KAB

pipeline is fully described in Karoff et al. (2010). It operates based on a novel algorithm

for modeling and fitting the autocovariance of the power spectrum, which has in turn

been developed by Campante et al. (2010b). This algorithm overcomes the problem of

mode identification and thus suits the automated nature of the pipeline, since there is

no longer the need to make subjective choices during the analysis process. The article

describing this algorithm can be found as a supplement in Appendix E.

Regarding the AAU pipeline, no work has unfortunately been published describing

its methodology. That is, however, what I intend to do herein. The AAU pipeline is

an automated pipeline designed to measure global asteroseismic parameters of main-

sequence and subgiant solar-like oscillators, which is accomplished by using exclusively

the time-series data as input. This pipeline is based on a series of programming modules

that were passed to me by William J. Chaplin, hence explaining some of the similarities

between the AAU and the Birmingham-Sheffield Hallam (Hekker et al. 2010) pipelines.

The underlying methodology of the AAU pipeline is described below. The results ob-

tained from the automated analysis – carried out using the methods of nine independent

research teams – of 1948 main-sequence and subgiant Kepler survey stars are presented

in Verner et al. (2011b). The AAU and KAB pipelines have taken part in this collective

effort.

The AAU pipeline consists of a series of modules that aim at extracting the following

information from the power spectra of the time-series data:

1. Frequency range of the oscillations;
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2. Parameterization of the stellar and instrumental background signals;

3. Average large frequency separation, ∆ν;

4. Maximum mode amplitude, Amax;

5. Frequency of maximum amplitude, νmax.

2.3.1 Range of oscillations

We have seen in Sect. 1.5.1.1 that the quasi-regularity of the spectrum of high-order p

modes constitutes one of the main signatures of the presence of solar-like oscillations.

We thus look for a frequency range in the power spectrum in which peaks appear at

nearly regular intervals. It should be noted that the assumption of quasi-regularity

of the spectrum may be too strong in the case of subgiants due to the presence of

g modes and mixed modes. Nevertheless, we start, from 100 µHz up to the Nyquist

frequency (∼ 8300 µHz for short-cadence data), by partitioning the power spectrum

into overlapping windows of variable width, w, which in turn depends on the value of

the central frequency of the window, νcentral, with the successive νcentral separated by

w/20. The values of νcentral are actually used as proxies for νmax. Since the width of

the p-mode hump roughly scales with νmax (e.g., Stello et al. 2007; Mosser et al. 2010),

w is defined as w = (νcentral/νmax,�)w�, with νmax,� = 3100 µHz and w� = 2000 µHz,

the latter being the expected value were the Sun to be observed as a bright star with

Kepler.

The next step consists in computing the power spectrum of the power spectrum,

PS⊗PS, for each of the frequency windows. The presence of prominent features in

the PS⊗PS around the predicted values of ∆ν/2, ∆ν/4, and ∆ν/6 (the first, second,

and third harmonics, respectively) is then examined. The predicted value of ∆ν is

computed according to the observed relation between ∆ν and νmax presented in Stello

et al. (2009a), to be precise, ∆ν∝ν0.77
central. An hypothesis test is subsequently applied,

whereby the presence of oscillations in a given window is established if the probability

of the three above features being due to noise is less than 1% (i.e., a confidence level

of 99% is required). The same considerations that allowed us to derive the statistics

of the power spectrum in Sect. 2.1.5 are also applicable here, thus meaning that the

PS⊗PS follows a χ2
2 distribution. Therefore, the probability that the peaks are due to
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noise is given by (1− p)ζN , where p is the probability that a random variable following

a χ2
6 distribution is larger than the average normalized height of the three peaks in the

PS⊗PS, ζ is an empirical correction factor that accounts for the effect of oversampling

(ζ=3 when oversampling by a factor of 10; Gabriel et al. 2002), and N is the number

of independent bins in the frequency window being considered. Finally, the frequency

range of the oscillations is determined based on the overall span of the windows with

confirmed oscillations.

In case the above strategy fails to detect oscillations, an alternative approach is

used that no longer assumes ∆ν to be constant with frequency, but instead takes into

account its frequency dependency by slightly stretching (or compressing) the frequency

axis of the power spectrum before computing the PS⊗PS for each of the windows.

This aims at producing a nearly regular pattern of peaks in the stretched (compressed)

power spectrum in contrast with the original spectrum, consequently enhancing the

SNR of the features associated with the large frequency separation in the PS⊗PS. The

details on how to implement this stretching can be found in Hekker et al. (2010) and

only a summary is provided here. In short, the stretched frequencies are given by:

νstretch = (ν − νcentral)− j smax

(
ν

νcentral
− 1
)2

, (2.99)

where j is an integer, and smax is the maximum amount of stretching allowed. The

optimal amount of stretching is then evaluated by looking for the value of j that

minimizes the probability of the features in the PS⊗PS being due to noise.

2.3.2 Background signal

The model of the background signal is kept simple. We opt for a model merely contain-

ing a granulation component and white noise, and fit it to a power spectrum that has

been previously smoothed. The smoothing implies Gaussian statistics and we there-

fore employ a nonlinear least-squares fit based on a gradient-expansion algorithm. The

frequency range of the oscillations (see previous section) is excluded from the fitting

window1. The fitting window starts at 100 µHz to allow for the decay of any possible

activity component, characterized by considerably longer timescales, and extends all

the way up to the Nyquist frequency. The granulation component is represented by a
1It should be noted, however, that a background fit is performed for all stars regardless of whether

or not oscillations have been detected.
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Harvey-like profile (cf. Eq. 2.74) to which an offset B is added containing mostly white

noise, resulting in the following functional form of the model:

Sbg(ν) +B =
Hgran

1 + (2πντgran)a
+B , (2.100)

where a is left as a free parameter. An example of a fit to the background signal is

displayed in the top panel of Fig. 2.14.

A careful choice of the initial guesses for each model parameter proves critical for

the convergence of the fitting procedure. Hgran is initially set to one thousandth of the

maximum power in the smoothed spectrum. The input for τgran is computed on the

assumption that it scales inversely with νmax (Huber et al. 2009; Kjeldsen & Bedding

2011). Since at this stage an estimate of νmax is not yet available, a proxy is used

instead, namely, the midpoint of the frequency range of the oscillations. The exponent

a is initially set to 2 following the original model of Harvey (1985). Finally, we choose

as input for B the mean power at high frequencies, well beyond the range of oscillations.

The above might, however, not be enough to achieve convergence and hence a trap

has been devised for the non-convergence of the fit. We start by randomly selecting an

input parameter and make a random increment (or decrement) to it before performing

the fit. This is repeated up to a maximum of a few hundred times until convergence is

achieved. The fitting procedure is said to converge – for a given set of input parameters

– when the relative decrease in χ2 is less than 1×10−6 in one iteration of the procedure.

Failure to converge means that no other pipeline modules will be run on that particular

star. Finally, the standard deviations of the model parameters are used as errors.

2.3.3 ∆ν

In order to estimate the average large frequency separation, ∆ν, we compute the PS⊗PS

over the frequency range of the oscillations (see bottom panel of Fig. 2.14 for an exam-

ple). Furthermore, the frequency dependence of ∆ν is taken into account by computing

the PS⊗PS for a power spectrum that has been optimally stretched (compressed). The

feature at ∆ν/2 (first harmonic) in the PS⊗PS is then located and its power-weighted

centroid computed to provide an estimate of ∆ν. The standard deviation of grouped

data, given by
√

[
∑
hx2 − (

∑
hx)2/

∑
h] / (

∑
h− 1), is also computed and used as

the error on ∆ν, meaning that the feature in the PS⊗PS is interpreted as an assembly

of spectral heights (h) over a number of bins (with midpoint x).
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2.3.4 Amax and νmax

We start by computing the power envelope for radial modes as a function of frequency

according to Kjeldsen et al. (2008a). First, we subtract the fit to the background

signal from the power spectrum. The residual spectrum thus obtained is then heavily

smoothed over the range occupied by the p modes by convolving it with a Gaussian

having a full width at half maximum of 4∆ν. Finally, we multiply the smoothed,

residual spectrum by ∆ν/c, where c, defined as c =
∑

(Sl/S0)2 (cf. Table 1.1), is a

factor1 measuring the effective number of modes per order and taken here to be 3.03.

The frequency at which the power envelope attains its maximum value is used next

as a proxy for νmax in the estimation of the maximum mode power. An estimate of

the maximum mode power is computed by averaging the spectrum over a rectangular

window of width 2∆ν centered at this proxy and converting to power per radial mode

as seen above. Computation of the associated uncertainty is then greatly simplified

and is given by the standard deviation of the powers in the bins within the rectangular

window.

The amplitude envelope is obtained by taking the square root of the power envelope.

This amplitude envelope is nothing but Arms (see Eqs. 1.34 and 1.37). Velocity ampli-

tude envelopes are also displayed in Fig. 1.18 for a number of stars. Once again, notice

that we are dealing with amplitudes scaled to be equivalent radial-mode amplitudes.

It follows that the maximum mode amplitude, Amax, is given by the square root of

the estimated maximum mode power. Moreover, the fractional error on the maximum

mode amplitude is half that on the maximum mode power.

Finally, a proper estimate of νmax is provided. We average the p-mode spectrum

over adjacent (independent) rectangular windows of width 2∆ν and convert to power

per radial mode. An estimate of νmax is then given by the power-weighted centroid,

with an associated uncertainty derived from the standard deviation of grouped data.

1The dependence of c on limb darkening is ignored.
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2.3 Getting practical: a pipeline for Kepler

1: procedure Parallel Tempering Metropolis-Hastings

2: λ0,i = λ0 , 1 ≤ i ≤ nγ
3: for t = 0, 1, . . . , Nit − 1 do
4: for i = 1, 2, . . . , nγ do
5: Propose a new sample to be drawn from a

proposal distribution: ξ ∼ N(λt,i; Σi)
6: Compute the Metropolis ratio:

ln r = ln p(ξ|D, γi, I)− ln p(λt,i|D, γi, I)
7: Sample a uniform random variable:

U1 ∼ Uniform(0, 1)
8: if lnU1 ≤ ln r then
9: λt+1,i = ξ

10: else
11: λt+1,i = λt,i

12: end if
13: end for
14: U2 ∼ Uniform(0, 1)
15: if U2 ≤ 1/nswap then
16: Select random chain:

i ∼ UniformInt(1, nγ − 1)
17: Compute rswap:

ln rswap = ln p(λt,i+1|D, γi, I) + ln p(λt,i|D, γi+1, I)
− ln p(λt,i|D, γi, I)− ln p(λt,i+1|D, γi+1, I)

18: U3 ∼ Uniform(0, 1)
19: if lnU3 ≤ ln rswap then
20: Swap parameter states of chains i and i+ 1:

λt,i ↔ λt,i+1

21: end if
22: end if
23: end for
24: return λt,i , ∀t , i :γi=1
25: end procedure

Figure 2.13: Metropolis-Hastings algorithm - A pseudocode version of the
Metropolis-Hastings algorithm with the inclusion of parallel tempering is given. For a
complete understanding of the implementation of parallel tempering (lines 14 to 22) I refer
the reader to Appendix D.

115



2. DATA ANALYSIS IN ASTEROSEISMOLOGY

Figure 2.14: Pipeline output from the analysis of the light curve of the bright
G-type dwarf 16 Cyg A - The solar analog 16 Cyg A is a member of a hierarchical triple
system and has been observed with Kepler throughout Quarter 7 (Q7) using a special
photometric mask. The top panel displays the smoothed power density spectrum (in dark
red), used in the fit to the background signal, atop the original spectrum (in black), on
a log-log scale. The fit to the background signal (red solid line) and both its components
(red dashed lines) are also shown (see text for details). The bottom panel displays the
PS⊗PS over the frequency range of the oscillations. The features at ∆ν/2 (∼ 52 µHz),
∆ν/4 (∼26 µHz) and ∆ν/6 (∼17 µHz) are conspicuous.
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Chapter 3

Selected results

In the course of the two previous chapters, I have made reference to a series of pub-

lished works that have benefited to a great extent from my contribution. For that

reason, I have decided to compile them in Appendices A to E. In the current chap-

ter, I present the reader with a series of additional published results to which I have

also contributed, although in a somewhat less determinant (but still significant) way.

These scientific results are divided into three categories according to the origin of the

acquired data, namely, arising from radial-velocity measurements taken during ground-

based campaigns, from CoRoT photometry, or from Kepler photometry.

The above does not enclose my contribution to the field since, during the past three

years, I have been involved (and continue to be) in a panoply of additional projects

that have meanwhile been published or still await publication. However, I feel that the

compendium of scientific results presented in this dissertation is fully representative of

my work and technical expertise.

3.1 Results from ground-based campaigns

3.1.1 An asteroseismic and interferometric study of the solar twin 18

Scorpii

Solar twins, defined as having fundamental physical properties very similar or identical

to solar (Cayrel de Strobel et al. 1981), are of great importance because they allow for

a precise differential analysis relative to the Sun. In Bazot et al. (2011), our goal has

been to use asteroseismology and interferometry on a study of 18 Scorpii, the brightest
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among the known solar twins. These techniques had already been combined to study

the bright subgiant β Hyi (North et al. 2007), for which a mass was derived through

the use of homology relations. In this study, we have applied a similar methodology to

18 Sco.

18 Scorpii, a 5th-magnitude star, has been observed for 12 nights with HARPS in

May 2009 as part of the asteroseismic component of this study. Figure 3.1 displays

the resulting power spectrum of radial-velocity measurements. An average large fre-

quency separation of 134.4± 0.3 µHz has been estimated based on the autocorrelation

of the time series. We have also performed long-baseline interferometry at visible wave-

lengths by using the PAVO beam-combiner (Ireland et al. 2008) at the CHARA array

(ten Brummelaar et al. 2005). An angular diameter of 0.6759 ± 0.0062 mas has been

estimated that, combined with the known parallax, leads to a radius of 1.010±0.009R�.

Using the homology relation given in Eq. (1.54), one obtains a mass of 1.02± 0.03 M�
for 18 Sco. This value for the mass is in good agreement with previously published

estimates derived from indirect methods, such as comparison between spectroscopic or

photometric observations and stellar evolutionary tracks.

This work shows the possibilities offered by the synergy between asteroseismology,

even if from a ground-based single site, and interferometry (for more on the combined

application of these two techniques see Cunha et al. 2007). Our results confirm that 18

Sco is remarkably similar to the Sun in terms of both radius and mass. The next steps

to be taken involve measuring the individual oscillation frequencies and performing full

modeling using all the available observations.

3.1.2 Probing the core properties of α Centauri A with asteroseismol-

ogy

The proximity of the visual binary system α Cen, allied to the similarity of its com-

ponents to the Sun, caused this system to become a preferred asteroseismic target1.

Moreover, its primary component, α Cen A (G2V), has a mass of 1.105 ± 0.007 M�
(Pourbaix et al. 2002), very close to the limit above which main-sequence stars keep

the convective core developed during the pre-main-sequence phase. For this reason, a

1An account is given in Sect. 1.6.2 of the asteroseismic campaigns dedicated to α Cen A during the

last decade.
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3.1 Results from ground-based campaigns

Figure 3.1: Power spectrum from radial-velocity measurements of 18 Sco - The
vertical dashed line marks the location of the equivalent Nyquist frequency. The inset
shows the spectral window, normalized to its maximum. The power spectrum shows a
clear hump of excess power around 3 mHz, reaching ∼ 0.04 m2 s−2, which corresponds to
amplitudes of ∼20 cm s−1. From Bazot et al. (2011).

theoretical study of α Cen A is particularly valuable for testing the poorly-modeled

treatment of convection and extra mixing in the central regions of low-mass stars.

In de Meulenaer et al. (2010), we have combined and analysed the radial-velocity

time series obtained in May 2001 with CORALIE (Bouchy & Carrier 2001, 2002),

UVES and UCLES (Butler et al. 2004; Bedding et al. 2004). The aim has been to

derive a precise set of asteroseismic constraints to be compared to models, that would

eventually allow us to improve the knowledge of the interior of α Cen A, namely, by

determining the nature of its core.

While the combined time series is as long as the CORALIE time series (12.45 days),

it contains almost five times more data points, significantly reducing the daily aliases

in the spectral window due to an enhanced time coverage (see Fig. 3.2). Three different

weighting schemes have been used in the computation of a Lomb-Scargle periodogram
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3. SELECTED RESULTS

Figure 3.2: Combined time series obtained for α Cen A with CORALIE, UVES,
and UCLES - Note that the UCLES data set, which has been obtained in Australia, fills
several of the gaps in the time series left by the other two data sets, obtained in Chile.
From de Meulenaer et al. (2010).

from the combined time series, thus resulting in three different power spectra. Since we

have employed Iterative Sine-Wave Fitting for frequency estimation (with all its known

problems concerning false detections and fatal error propagation; recall Sect. 2.1.9),

we hoped to guarantee the genuineness of the detected frequencies by analysing three

different power spectra. We have detected 44 modes with l= 0, 1, 2, 3, in overall good

agreement with previous works, of which 14 showed possible rotational splittings. New

average values have been derived for the large and small frequency separations.

Miglio & Montalbán (2005) have performed several calibrations of the α Cen system

using both classical (photometric, spectroscopic, and astrometric) and asteroseismic

constraints. They found that models with either a radiative or a convective core could

equally well reproduce the classical constraints, and that an overshooting parameter

αov > 0.15 is sufficient for a convective core to persist once the star leaves the pre-
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main-sequence phase. They also realized that the structural differences in these two

sets of models leave distinctive signatures on the oscillation frequencies, in particular

on the ratios r02 (cf. Eq. 1.55) and r10 (cf. Eq. 1.56). In Fig. 3.3 we compare the

observed ratios r02 and r10 – derived from the frequencies estimated in our study –

with those computed from a couple of models from Miglio & Montalbán (2005), to be

specific, their models A3 (radiative core and no overshooting) and A4 (convective core

and αov = 0.2). Although the ratio r02 does not help discriminating between models,

the ratio r10 allows us to reject model A4. Therefore, current observational constraints

seem not to be in favor of a convective core in α Cen A. Moreover, we are able to set

an upper limit to the amount of convective-core overshooting needed to model stars of

mass and metallicity similar to those of α Cen A.

3.2 Results from CoRoT

3.2.1 A fresh look at the seismic spectrum of HD 49933

In Benomar et al. (2009b), we have analysed 180 days of CoRoT photometry on the F5

main-sequence star HD 49933. In 2007, CoRoT had already produced a 60-day time

series on this target as a result of an initial short run. These initial data would be sub-

sequently analysed by Appourchaux et al. (2008), thus providing the first asteroseismic

results from CoRoT on a star displaying solar-like oscillations. A new and longer run

of 137 days then followed in 2008. Note also that this star had been observed during

10 nights with HARPS (Mosser et al. 2005) previous to the advent of CoRoT.

The seismic spectrum of HD 49933 has proven very difficult to interpret. Mosser

et al. (2005) were unable to isolate individual p modes in the power spectrum, but

could still measure the large frequency separation. The data analysed by Appourchaux

et al. (2008) clearly showed individual p-mode peaks in the power spectrum. However,

they still had to face the problem of mode identification (recall the discussion on the “F

star problem” in Sect. 2.2.3.2), which was apparently solved based on the computation

of a likelihood ratio. This same time series would be the object of further studies. For

instance, Benomar et al. (2009a), based on the computation of a Bayesian odds ratio

(cf. Eq. 2.95), found mode identification to be ambiguous for this star. Needless to say,

controversy arised.
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3.2 Results from CoRoT

As already stated above, in this work we have analysed 180 days of photometric

data. Three power spectra were computed: from the initial 60-day run and from two

non-overlapping subsets of 60 days each belonging to the second longer run. These

spectra were then averaged, hence reducing the variance in the resulting average power

spectrum. This final power spectrum was distributed to a number of fitters, who

then fitted a common model to the spectrum using different methods (MLE, MAP

and a Bayesian approach using MCMC techniques) or the same method applied in

an independent manner. The different methods yielded consistent results, allowing us

to make a robust identification of the modes in terms of the degree l (see Fig. 3.4).

Our preferred mode identification, opposite to the one advanced by Appourchaux et al.

(2008), was established with a very high confidence level. Moreover, the precision with

which mode parameters were estimated has significantly increased, with the rotational

splitting remaining the only mode parameter that is poorly constrained.

3.2.2 The CoRoT target HD 52265: a G0V metal-rich exoplanet-host

star

HD 52265 is a G0V metal-rich exoplanet-host1 star observed in the seismology field of

the CoRoT space telescope from November 2008 to March 2009. The satellite collected

117 days of high-precision photometric data on this star with a duty cycle of 90%,

allowing for a clear detection of solar-like oscillations. Complementary ground-based

observations were obtained with the Narval spectrograph at the Pic du Midi observatory

in December 2008 and January 2009, i.e., simultaneously with CoRoT observations.

In Ballot et al. (2011), our aim has been to characterize HD 52265 using both

spectroscopic and seismic data. To date, only a handful of exoplanet-host stars have

been the object of seismic studies: µ Ara (Bouchy et al. 2005), ι Hor (Vauclair et al.

2008), HD 46375 (Gaulme et al. 2010), HAT-P-7, HAT-P-11 and TrES-2 (Christensen-

Dalsgaard et al. 2010). The high-quality CoRoT observations of HD 52265 have allowed

us to determine its seismic properties with a precision never before obtained for any

other exoplanet-host star.

Precise fundamental stellar parameters have been obtained: Teff = 6100 ± 60 K,

log g = 4.35 ± 0.09, [M/H] = 0.19 ± 0.05, as well as v sin i = 3.6+0.3
−1.0 km s−1. We have

1A planet orbiting HD 52265 was independently discovered in 2000 by Butler et al. (2000) and Naef

et al. (2001).
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Figure 3.4: Average spectrum of HD 49933 in échelle format - This échelle diagram
has been computed using a large frequency separation of 85 µHz and then smoothed to
0.8 µHz (4 bins). Identification of the ridges from a simple visual inspection is far from
evident. In our preferred identification scenario, the left-hand ridge corresponds to l= 1
and the right-hand ridge to l=0, 2. From Benomar et al. (2009b).

derived the granulation properties and have analysed the signature of stellar rotation

arising from the modulation of the light curve due to photospheric magnetic activity

(see Fig. 3.5). Thanks to spot-modeling of the light curve, we have found a mean

rotational period of Prot =12.3± 0.15 days.

Parameters describing the observed p modes have been estimated using MLE.

A global fit to the spectrum has been performed, over about ten radial orders, for

degrees l = 0, 1, 2. The frequencies of 31 modes are reported in the range 1500–

2550 µHz. The large separation exhibits a clear modulation around the mean value

〈∆ν〉 = 98.3 ± 0.1 µHz, which we interpret as possibly being associated with the he-
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3.2 Results from CoRoT

Figure 3.5: Power density spectrum of HD 52265 at the low-frequency end - The
power density spectrum is represented by the solid line, while the dashed line corresponds
to an oversampled version of the spectrum (by a factor of 10). The modulation of the light
curve caused by photospheric spots produces a significant peak at 1.05 µHz and another
very close one at 0.91 µHz. We interpret this broadened structure as being the signature
of differential rotation. Peaks around 2 and 3 µHz are simply overtones of the rotational
period. From Ballot et al. (2011).

lium second-ionization region. Mode linewidths vary with frequency along a S-shaped

curve with a local maximum around 1800 µHz (see Fig. 3.6). Mode lifetimes range

between 0.5 and 3 days, being shorter than solar, although significantly longer than

those observed for F stars. Finally, amplitudes increase almost regularly until reaching

a maximum around 2100 µHz, remaining close to that maximum before sharply drop-

ping above 2450 µHz. The fitted maximum bolometric amplitude for radial modes is

3.96± 0.24 ppm.

Thanks to the precise estimates of mode frequencies (a precision of about 0.2 µHz

has been achieved for the highest-amplitude modes) and fundamental parameters,
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Figure 3.6: Mode linewidths as a function of frequency for HD 52265 - Crosses
correspond to values obtained by fitting a common width for modes with (n− 1, l=1) and
(n, l=0), whereas plus signs correspond to values obtained by fitting a common width for
modes with (n, l=1) and (n, l=0). The dotted line indicates the spectral resolution. The
dashed line shows the prediction of Chaplin et al. (2009). From Ballot et al. (2011).

HD 52265 has become a promising object for stellar modeling. This seismic study

will also help improving our knowledge of the planetary companion.

3.2.3 On the origin of the intermediate-order g modes observed in

the hybrid γ Dor/δ Sct star HD 49434

γ Doradus stars pulsate in high-order g modes with periods of order 1 day, driven by

convective-flux blocking at the base of their convective envelopes. δ Scuti stars, on the

other hand, pulsate in low-order p modes with periods of order 2 hours, driven by the

κ mechanism operating in the He ii ionization zone. The two types of modes have their

properties determined by different portions of the stellar interior. Therefore, hybrid γ

Dor/δ Sct pulsators are of great interest because they offer additional constraints on
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3.2 Results from CoRoT

stellar structure and may be used to test theoretical models (Grigahcène et al. 2010).

Furthermore, in the same locus of the Hertzsprung-Russell diagram where the γ Dor

and δ Sct instability strips overlap, solar-like oscillations are also predicted to occur for

δ Sct stars (Houdek et al. 1999; Samadi et al. 2002), having actually been confirmed

observationally for the very first time by Antoci et al. (2011).

In Campante et al. (2010a)1, we have analysed the frequency power spectrum of

HD 49434 resulting from 136.9 days of CoRoT photometry. HD 49434 (F1V) had

been referenced as a candidate hybrid γ Dor/δ Sct star by Uytterhoeven et al. (2008),

following an extensive photometric and spectroscopic ground-based campaign, a classi-

fication that Chapellier et al. (2011) could, however, not confirm. A compelling feature

of its frequency power spectrum is the presence of intermediate-order g modes between

the simultaneously excited high-order g modes (γ Dor regime) and low-order p modes

(δ Sct regime). However, time-dependent convection models (Dupret et al. 2005; Gri-

gahcène et al. 2005) predict the existence of a theoretical frequency gap that is stable

to pulsations in the range 5–15 d−1 (i.e., between the two regimes just mentioned) for

low-degree modes. This raises the question as to which mechanism is responsible for

the excitation of the observed intermediate-order g modes.

In this work, we have addressed the possibility that such modes are excited by a

stochastic mechanism. A search for the signature of stochastic excitation in a selection

of modes within the theoretical frequency gap was carried out according to the statis-

tical method described in Pereira & Lopes (2005) (recall the discussion in Sect. 1.4.4).

Figure 3.7 displays the so-called excitation diagram for a selection of modes within

the theoretical frequency gap. The fact that the observational results lie outside the

confidence interval (for the two strongest modes) or just over the 1-σ lower bound (for

the two faintest modes) may tempt one to conclude that these modes are not stochas-

tically excited. However, we need to be cautious and a new analysis should be carried

out that uses a larger number of amplitude measurements (i.e., using shorter subseries

or, alternatively, based on a longer time series), thus increasing the significance of the

statistic σ(A)/〈A〉.

1This non-refereed proceedings paper resulted from a poster presentation at the Fourth HELAS

International Conference, held in Lanzarote in February 2010.
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Figure 3.7: Excitation diagram for 4 selected modes within the frequency gap -
Observational results for a selection of 4 modes within the gap are plotted with accompany-
ing error bars. The thick solid line represents the theoretical relation σ(A)=0.52〈A〉. The
thin solid line represents the outcome of Monte Carlo simulations – assuming stochastic
excitation and the same sampling used to obtain the observational results – which gave
σ(A)≈0.41〈A〉, with the corresponding 1-σ bounds represented by the dashed lines. From
Campante et al. (2010a).

3.3 Results from Kepler

3.3.1 Global properties of solar-like oscillations observed by Kepler :

a comparison of complementary analysis methods

In Sect. 2.3, I emphasized the main reasons why automated pipelines have been used

to analyse Kepler data on main-sequence and subgiant solar-like oscillators. Firstly,

global asteroseismic parameters are readily obtainable – even from data with low SNR

– using automated analysis methods. Secondly, the automated nature of these pipelines

is required to efficiently exploit the plenitude of data made available by Kepler on these

targets.
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3.3 Results from Kepler

In Verner et al. (2011b), we present the asteroseismic analysis of 1948 F-, G-, and

K-type main-sequence and subgiant stars observed by Kepler during the first seven

months of science operations. This incorporates all short-cadence observations of stars

that have been identified as potentially showing solar-like oscillations. We have detected

solar-like oscillations in 642 of these stars and have characterized them by their average

large frequency separation (∆ν), frequency of maximum amplitude (νmax), and maxi-

mum mode amplitude (Amax). This represents the largest cohort of main-sequence and

subgiant solar-like oscillators observed to date. By combining results from the analysis

methods of nine independent research teams (see Table 3.1), we have verified the detec-

tions, rejected outliers, and devised a method to ensure the results are consistent within

an accurate uncertainty range. It is apparent that the formal uncertainties returned

from automated analysis methods are often inconsistent with the actual precision of

the results. Obtaining an accurate uncertainty on the global asteroseismic parameters

is essential when using such results to model stellar structure.

We have correlated the fraction of stars for which we detected oscillations with the

stellar parameters from the Kepler Input Catalog (KIC; e.g., Brown et al. 2011; Verner

et al. 2011a), and found a significant reduction in the proportion of solar-like oscillators

with effective temperatures in the range 5300 K .Teff . 5700 K, viz., the temperature

range that separates the distributions of main-sequence stars from subgiants. This

has also been noted by Chaplin et al. (2011b), who have suggested that this absence of

oscillators may be due to evolutionary effects that cause an increase in surface magnetic

activity, thus reducing the detectability of oscillations. Moreover, a drop-off has been

found in the relative number of detected oscillators approaching the red edge of the

classical instability strip.

By characterizing the stars by ∆ν or νmax, we have clearly identified the separate

main-sequence and subgiant populations (see Fig. 3.8). The distributions of these global

asteroseismic parameters for the observed main-sequence stars show that we typically

find values of ∆ν and νmax smaller than solar. This reflects the increased amplitude of

oscillations in stars with lower νmax and the higher intrinsic luminosity of such stars.

The stars with asteroseismic parameters closer to those of the Sun also tend to be the

brighter stars in the set.

By combining the scaling relations in Eqs. (1.32) and (1.54), Stello et al. (2009a)

showed that the expected relationship between ∆ν and νmax is almost independent of
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3.3 Results from Kepler

Table 3.1: Summary of the methods used by each automated pipeline - Abbreviations used
are SPS – smoothed power spectrum, PSPS – power spectrum of the power spectrum, TSACF – time
series autocorrelation function, PSACF – power spectrum autocorrelation function, and K08 – method
based on Kjeldsen et al. (2008a).

Pipeline Method for ∆ν Method for νmax Method for Amax

A2Za Peak of PSPS Fit to SPS Fit to SPS (K08)
AAUb Peak of PSPS Peak of SPS Peak of SPS
CORc Fit to TSACF Fit to SPS Fit to TSACF
IAS Peak of TSACF Fit to SPS Fit to SPS (K08)
OCTd 1: PSPS (full PS) 1: Fit to SPS 1: Peak of SPS

2: PSPS (Bayesian on full PS)j 2: Peak of SPSj 2: Fit to SPS
3: PSPS (small ν range)j 3: Fit to SPS (K08)
4: PSPS (Bayesian on small ν range)j

ORKe Comb response function CLEAN algorithm —
QMLf 1: Peak of TSACF Fit to PSACF Fit to PSACF

2: Fit to PSACF
KABg,h Fit to PSACF 1: Fit to PSACF Fit to SPS

2: Fit to SPS
SYDi Fit to PSACF 1: Peak of SPS 1: Peak of SPS (K08)

2: Fit to SPS 2: Fit to SPS (K08)
a Mathur et al. (2010b); b see Sect. 2.3; c Mosser & Appourchaux (2009); d Hekker et al. (2010); e Bonanno et al.

(2008); f Verner & Roxburgh (2011); g Campante et al. (2010b); h Karoff et al. (2010); i Huber et al. (2009);
j only used for the analysis of simulated data.

luminosity and only weakly dependent on mass and effective temperature. To a good

approximation, we can assume

∆ν
∆ν�

≈
(
νmax

νmax,�

)a
, (3.1)

after scaling by solar values. We have determined the exponents of power-law relation-

ships between the verified ∆ν and νmax values and found that the scatter in the results

is at a level greater than the formal uncertainties obtained for the individual methods.

Taking a weighted average of the exponents, we have determined a power-law exponent

of a= 0.795 ± 0.007, which is significantly higher than that found using data from a

similar number of red giants: a=0.784± 0.003 (Hekker et al. 2009). This discrepancy

can be explained by the different temperatures and evolutionary states of the stars in

each study.

The maximum mode amplitudes obtained by each method have been used to de-

termine the exponent s (cf. Eq. 1.33) relating the dependence of mode amplitude on
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L/M . We have used bolometric-corrected amplitudes and set r= 1.5 (cf. Eq. 1.35) to

find that a strong temperature dependence remains in s. This is not surprising, since

setting r= 1.5 in Eq. (1.35) relies on a very simple adiabatic description of the stellar

atmosphere. We have constrained this dependence by a linear relationship, which gives

a value of s for stars in the red-giant regime that agrees with that determined in Mosser

et al. (2010).

3.3.2 Ensemble asteroseismology of solar-type stars with Kepler

During the first seven months of science operations, more than 2000 stars have been

selected for observation at short cadence for a 1-month period each, as part of an

asteroseismic survey of the solar-type population in the Kepler field of view. These

stars have magnitudes down to Kepler apparent magnitude Kp ≈ 12 and have been

selected as potential solar-type targets based upon parameters in the KIC. In Chaplin

et al. (2011c), we report the detection of solar-like oscillations in 500 of these stars, an

ensemble that is large enough to allow statistical studies of intrinsic stellar properties

(such as mass, radius, and age) and to test theories of stellar evolution.

We have made use of the ∆ν and νmax of the stars in the ensemble, together with

estimates of Teff derived from multicolor photometry available in the KIC, to esti-

mate the masses and radii in a way that is independent of stellar evolutionary models.

This so-called direct method of estimation uses the following relations (Kallinger et al.

2010b):
R

R�
≈ νmax

νmax,�

(
∆ν

∆ν�

)−2( Teff

Teff,�

)0.5

(3.2)

and
M

M�
≈
(
νmax

νmax,�

)3( ∆ν
∆ν�

)−4( Teff

Teff,�

)1.5

, (3.3)

which can be arrived at by combining Eqs. (1.32) and (1.54), and then solving for R

and M , respectively. We have obtained a median fractional uncertainty of just over

10% in M and about 5.5% in R. The direct method gives larger uncertainties on M and

on R than would be obtained from a grid-based method of estimation (i.e., matching

the observations to stellar evolutionary tracks; e.g., Stello et al. 2009b; Basu et al.

2010; Quirion et al. 2010; Gai et al. 2011). However, the lack of precise independent

constraints on the metallicities meant that the grid-based approach would be vulnerable

to a systematic bias in the estimates of M (although not R).
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3.3 Results from Kepler

Figure 3.9: Observed versus predicted distributions of fundamental stellar pa-
rameters - Black lines show histograms of the observed distributions of masses (top panel)
and radii (bottom panel). In red, the predicted distributions from population synthesis
modeling, after correction for the effects of detection bias. From Chaplin et al. (2011c).

The observed distributions of stellar masses and radii have been compared with

those predicted from synthetic stellar populations (see Fig. 3.9). The synthetic popu-

lations have been calculated by modeling the formation and evolution of stars in the

Kepler field of view. This modeling requires descriptions of, for example, the star-

formation history, the spatial density of stars in the disk of the Galaxy, and the rate at

which the Galaxy is chemically enriched by stellar evolution. While the distributions

of stellar radii are similar, the same cannot be said for the mass distributions. We

have applied the Kolmogorov-Smirnov test in order to quantify differences between the

observed and synthetic distributions. Differences in radius were found to be marginally

significant at best. In contrast, those in mass were found to be highly significant

133



3. SELECTED RESULTS

(> 99.99%). The observed distribution of masses is wider at its peak than the pre-

dicted distribution and is offset toward slightly lower masses. On the assumption that

the observed masses and radii are robust, this result may have implications for both

the star-formation rate and the initial mass function of stars.

3.3.3 Solar-like oscillations in KIC 11395018 and KIC 11234888 from

eight months of Kepler data

Since the start of Kepler science operations in May 2009, a selection of survey stars

have been continuously monitored at short cadence to test and validate the time-series

photometry, five of which show evidence of solar-like oscillations. Such continuous and

long observations are unprecedented for solar-type stars other than the Sun. In Mathur

et al. (2011), we have analysed 8-month-long time series with a duty cycle in excess of

90% for two of these stars1, namely, KIC 11395018 and KIC 11234888. The two stars

selected for this study are relatively faint – KIC 11395018 (G-type) and KIC 11234888

(late F-type) have Kepler apparent magnitudes of Kp=10.8 andKp=11.9, respectively

– and display low SNR in the p-mode peaks. The light curves used in the analysis have

been corrected for instrumental effects in a manner independent of the Kepler science

pipeline (for details see Garćıa et al. 2011b).

Different fitting strategies have been employed to extract estimates of p-mode fre-

quencies as well as of other individual mode parameters, from which we have selected

frequency lists that will help constrain stellar models. A total of 22 and 16 modes of

degree l = 0, 1, 2 have been identified for KIC 11395018 (in the range 600–1000 µHz)

and KIC 11234888 (in the range 500–900 µHz), respectively. Moreover, two avoided

crossings (l = 1 ridge) have been identified for KIC 11395018, while a more complex

échelle spectrum has been found for KIC 11234888 displaying several avoided crossings

(see Fig. 3.10). Both stars are thus thought to have evolved off the main sequence.

These results confirm previous expectations that asteroseismology of solar-type survey

targets is possible down to apparent magnitudes of 11 and fainter, provided we work

with a multi-month time series (e.g., Stello et al. 2009b).

The global asteroseismic parameters reported for these stars, together with a de-

tailed atmospheric analysis, should allow constraining their radii, masses and ages with

1Two other stars, namely, KIC 10273246 and KIC 10920273, are analysed in Campante et al.

(2011).
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3.3 Results from Kepler

Figure 3.10: Échelle diagram of the power density spectrum of KIC 11234888
- The minimal (filled symbols) and maximal (filled and open symbols) frequency sets are
displayed (for a definition see Campante et al. 2011). Symbol shapes indicate mode degree:
l=0 (circles), l=1 (triangles), and l=2 (squares). From Mathur et al. (2011).

considerable precision (Creevey et al. 2012). Further insight into the physics of these

evolved solar-type stars – based on detailed modeling and inversion techniques – is now

possible due to the high quality of the seismic parameters found.
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2003, A&A, 404, 341
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Martić, M., Schmitt, J., Lebrun, J., et al. 1999,

A&A, 351, 993
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physiques. (Savans étrangers.), 1, 638

Peligrad, M. & Wu, W. B. 2010, Annals of Prob-

ability, 38, 2009

Pereira, T. M. D. & Lopes, I. P. 2005, ApJ, 622,

1068

145



BIBLIOGRAPHY

Pereira, T. M. D., Suárez, J. C., Lopes, I. P.,

et al. 2007, A&A, 464, 659

Pourbaix, D., Nidever, D., McCarthy, C., et al.

2002, A&A, 386, 280

Powell, M. J. D. 1964, Computer Journal, 7, 155

Press, W. H. & Rybicki, G. B. 1989, ApJ, 338,

277

Quirion, P.-O., Christensen-Dalsgaard, J., & Ar-

entoft, T. 2010, ApJ, 725, 2176

Rao, C. R. 1945, Bulletin of the Calcutta Math-

ematical Society, 37, 81

Reegen, P. 2004, in IAU Symposium, Vol. 224,

The A-Star Puzzle, ed. J. Zverko, J. Ziznovsky,

S. J. Adelman, & W. W. Weiss, 791–798

Roberts, D. H., Lehar, J., & Dreher, J. W. 1987,

AJ, 93, 968

Roxburgh, I. W. 2009a, A&A, 506, 435

Roxburgh, I. W. 2009b, A&A, 493, 185

Roxburgh, I. W. & Vorontsov, S. V. 2003, A&A,

411, 215

Saio, H. 1981, ApJ, 244, 299

Salabert, D., Ballot, J., & Garćıa, R. A. 2011,
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Schuster, A. 1905, Proceedings of the Royal So-

ciety of London, 77, 136

Scott, J. G. & Berger, J. O. 2010, Annals of

Statistics, 38, 2587

Sellke, T., Bayarri, M. J., & Berger, J. O. 2001,

American Statistician, 55, 62

Severino, G., Magr̀ı, M., Oliviero, M., Straus, T.,

& Jefferies, S. M. 2001, ApJ, 561, 444

Shannon, C. E. 1949, Proceedings of the Institute

of Radio Engineers, 37, 10

Shapley, H. 1914, ApJ, 40, 448

Silva Aguirre, V., Ballot, J., Serenelli, A. M., &

Weiss, A. 2011a, A&A, 529, A63

Silva Aguirre, V., Chaplin, W. J., Ballot, J., et al.

2011b, ApJ, 740, L2

Smeyers, P. 1968, Annales d’Astrophysique, 31,

159

Soriano, M. & Vauclair, S. 2008, A&A, 488, 975

Stahn, T. & Gizon, L. 2008, Sol. Phys., 251, 31

Stello, D., Basu, S., Bruntt, H., et al. 2010, ApJ,

713, L182

Stello, D., Bruntt, H., Kjeldsen, H., et al. 2007,

MNRAS, 377, 584

Stello, D., Chaplin, W. J., Basu, S., Elsworth, Y.,

& Bedding, T. R. 2009a, MNRAS, 400, L80

Stello, D., Chaplin, W. J., Bruntt, H., et al.

2009b, ApJ, 700, 1589

146



BIBLIOGRAPHY

Tarrant, N. J., Chaplin, W. J., Elsworth, Y.,

Spreckley, S. A., & Stevens, I. R. 2007, MN-

RAS, 382, L48

Tarrant, N. J., Chaplin, W. J., Elsworth, Y.,

Spreckley, S. A., & Stevens, I. R. 2008, A&A,

483, L43

Tassoul, M. 1980, ApJS, 43, 469

ten Brummelaar, T. A., McAlister, H. A., Ridg-

way, S. T., et al. 2005, ApJ, 628, 453

Torrence, C. & Compo, G. P. 1998, Bulletin of

the American Meteorological Society, 79, 61

Toutain, T. & Appourchaux, T. 1994, A&A, 289,

649

Uytterhoeven, K., Mathias, P., Poretti, E., et al.

2008, A&A, 489, 1213

Vandakurov, Y. V. 1967, AZh, 44, 786

Vauclair, S., Laymand, M., Bouchy, F., et al.

2008, A&A, 482, L5

Verner, G. A., Chaplin, W. J., Basu, S., et al.

2011a, ApJ, 738, L28

Verner, G. A., Chaplin, W. J., & Elsworth, Y.

2006, ApJ, 638, 440

Verner, G. A., Elsworth, Y., Chaplin, W. J., et al.

2011b, MNRAS, 415, 3539

Verner, G. A. & Roxburgh, I. W. 2011,

Astronomische Nachrichten, in press

[arXiv:1104.0631v1]

Walker, G. A. H. 2008, Journal of Physics Con-

ference Series, 118, 012013

Walker, G. A. H., Matthews, J. M., Kuschnig,

R., et al. 2003, PASP, 115, 1023

White, T. R., Bedding, T. R., Stello, D., et al.

2011a, ApJ, 742, L3

White, T. R., Bedding, T. R., Stello, D., et al.

2011b, ApJ, in press [arXiv:1109.3455v1]

White, T. R., Brewer, B. J., Bedding, T. R.,

Stello, D., & Kjeldsen, H. 2010, Communica-

tions in Asteroseismology, 161, 39

Wiener, N. 1930, Acta Mathematica, 55, 117

Wilks, S. S. 1938, Annals of Mathematical Statis-

tics, 9, 60

Woodard, M. F. 1984, PhD thesis, University of

California, San Diego, USA

Zechmeister, M. & Kürster, M. 2009, A&A, 496,

577

Zhevakin, S. A. 1963, ARA&A, 1, 367

Zwintz, K., Kuschnig, R., Weiss, W. W., Gray,

R. O., & Jenkner, H. 1999, A&A, 343, 899

147



BIBLIOGRAPHY

148



Appendices

149





Appendix A

151



LETTER
doi:10.1038/nature10389

The excitation of solar-like oscillations in a d Sct star
by efficient envelope convection
V. Antoci1, G. Handler1,2, T. L. Campante3,4, A. O. Thygesen4,5, A. Moya6, T. Kallinger1,7,8, D. Stello9, A. Grigahcène3, H. Kjeldsen4,
T. R. Bedding9, T. Lüftinger1, J. Christensen-Dalsgaard4, G. Catanzaro10, A. Frasca10, P. De Cat11, K. Uytterhoeven12,13,14,15,
H. Bruntt4, G. Houdek1, D. W. Kurtz16, P. Lenz2, A. Kaiser1, J. Van Cleve17, C. Allen18 & B. D. Clarke17

Delta Scuti (d Sct)1 stars are opacity-driven pulsators with masses
of 1.5–2.5M[, their pulsations resulting from the varying ioniza-
tion of helium. In less massive stars2 such as the Sun, convection
transports mass and energy through the outer 30 per cent of the
star and excites a rich spectrum of resonant acoustic modes. Based
on the solar example, with no firm theoretical basis, models predict
that the convective envelope in d Sct stars extends only about 1 per
cent of the radius3, but with sufficient energy to excite solar-like
oscillations4,5. This was not observed before the Kepler mission6, so
the presence of a convective envelope in the models has been
questioned. Here we report the detection of solar-like oscillations
in the d Sct star HD 187547, implying that surface convection
operates efficiently in stars about twice as massive as the Sun, as
the ad hoc models predicted.

Thirty days of continuous observations of HD 187547 (KIC 7548479)
by the Kepler mission with a cadence of 1 min led to its identification as a
d Sct pulsator (Fig. 1a, b). In contrast to the non-uniformly distributed
signals at low frequencies, the observed regularly spaced peaks at high
frequencies (Fig. 1c) suggest that we also observe high-radial-order over-
tones as expected for stochastically excited solar-like oscillations. For
such oscillations the observed comb-like frequency structure (with the
large frequency separation Dn indicating the frequency separation
between consecutive radial overtones of like degree) is the result of
mainly radial and dipolar pulsation modes, whereas for d Sct stars it
is not clear which modes are excited to observable amplitudes. The
strikingly broadened structures observed only at high frequencies
(Figs 1f and 2b, c) suggest that each is due either to single damped
and stochastically re-excited oscillations or to very close unresolved
frequencies of coherent oscillations.

Here we use spectroscopic observations to derive an effective tem-
perature Teff 5 7,500 6 250 K, a surface gravity of log g 5 3.90 6 0.25
dex (c.g.s.) and a projected rotational velocity of v sin i 5 10.3 6 2.3
km s21 (see Supplementary Information for details). We identify
HD 187547 as an Am star from chemical element abundance analysis,
which is consistent with the observed low v sin i typical for these stars.
Am stars are stars of spectral type A showing atmospheric under-
abundance when compared with the Sun in the chemical elements
Sc and Ca, and an overabundance of Ba, Sr and Y (ref. 7). We compute
a photospheric metallicity (all elements except H and He) of Z 5 0.017,
which is larger than the solar value of Z 5 0.0134 (ref. 8).

About two-thirds of Am stars are primary components of spectro-
scopic binary systems9. The Am phenomenon is connected to slow

rotation, which is not common in A type stars. Binarity is believed to
act as a braking mechanism slowing down the rotation and allowing
spectral peculiarities to occur as a result of element diffusion10.
Pulsating Am stars still represent a challenge to theory, because He
is expected to settle gravitationally and should only partly be present in
the He II ionization zone where the d Sct pulsations are excited. In
other words, theoretical models predict that the hottest and youngest
A-type stars should not pulsate10, which is in contradiction with recent
observations11. As the stars evolve, their convective envelopes deepen
and efficiently mix the stellar matter, erasing the observed chemical
peculiarities in the atmospheres, allowing the opacity mechanism to
drive pulsation in the He II ionization zone. Using the observed solar-
like oscillations reported here, the depth of the convective envelope can
be derived (hence the mixing length), probing the diffusion of He and
heavy elements in this star. This will contribute significantly to revising
the interaction between pulsation and diffusion in models of Am stars.

Seven radial velocity measurements of HD 187547, spread over
153 days, give no evidence for a short-period binary system. In addi-
tion, the absence of any detectable contribution by a potential close
companion to the spectrum implies a considerably less luminous star
of spectral type G or later. The expected amplitudes and frequency of
maximum oscillation power for such a star are inconsistent with the
observations, leading to the conclusion that the signal observed in
Fig. 1c cannot originate from a companion. The observed amplitude
spectrum of HD 187547 is not affected by a background star because
the fraction of light in the aperture from neighbouring stars is only
1.5%. Other chemically peculiar pulsating stars situated, as the d Sct
stars, in the classical instability strip in the Hertzsprung–Russell dia-
gram12 are the rapidly oscillating Ap stars. Their high-radial-order
pulsation modes are triggered by the opacity mechanism acting in
the hydrogen ionization zone, often showing equidistant multiplets
in the frequency spectrum as a result of the alignment of the pulsation
axes with strong magnetic fields13. The strong magnetic fields as seen in
rapidly oscillating Ap stars are, however, not observed in Am stars14.
We therefore exclude the possibility that HD 187547 is a hybrid of a
d Sct and a rapidly oscillating Ap star.

In Fig. 3 we show an échelle diagram comparing the observed
frequencies with a model of a star similar to HD 187547, demon-
strating again the clear structures separated by Dn at high frequencies
and the non-structured distribution at lower frequencies. For the
high-frequency modes we derive a mean large frequency separa-
tion Dn of 40.5 6 0.6mHz. Using the empirical relation15
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Energies Alternatives, Institut de Recherche sur Les Lois Fondamentales, Service d’Astrophysique, Centre de Saclay, F-91191, Gif-sur-Yvette, France. 13Kiepenheuer-Institut für Sonnenphysik,
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Dn 5 (0.263 6 0.009)mHz(nmaxmHz21)0.772 6 0.005 we obtain a fre-
quency of maximum power nmax~682z41

{43 mHz. This is in very good
agreement with the highest-amplitude mode in the supposed stochastic
frequency region at 696mHz. The possibility that what we observe is
0.5Dn in the frequency spectrum is ruled out because this would require
a nmax at about 1,673mHz, where no signal is observed. We can also
exclude the observation of 2Dn because that would place nmax at
277mHz, close to the dominant opacity-driven mode at 251mHz.

The amplitudes of solar-like oscillations are determined by the inter-
action between driving and damping defined by different physical pro-
cesses2, such as modulation of the turbulent momentum and heat fluxes
by pulsation. The exact contribution to driving and damping by each of
these processes is still not well understood, resulting in uncertainties in
the predictions of the stochastically excited mode amplitudes16, particu-
larly in hotter stars2,3 in which the convective envelopes are shallow. We
expect the mixing length, the amplitudes and mode lifetimes to con-
strain the anisotropy of the convective velocity field, parameters that all
semi-analytical convection models rely on17.

For HD 187547 we measure a peak-amplitude per radial mode18 for
the assumed stochastic signal of 56 6 2 p.p.m., which after bolometric
correction19 results in 67 6 3 p.p.m. (see Supplementary Information
for details). From the empirical scaling relation20 and using a bolometric
solar peak-amplitude of 3.6 p.p.m. (ref. 21) we obtain a predicted peak
amplitude of A 5 14 6 9 p.p.m. The mean mode lifetimes are mea-
sured22 as 5.7 6 0.8 days. Empirical relations predict a mode lifetime
for a star with Teff 5 7,500 6 250 K of the order of one day23 or shorter24,
which is not in agreement with what we measure for HD 187547.
However, these scaling relations (for amplitude and mode lifetimes)
are based on few observed stars, and none of them is calibrated in the
temperature domain of our target, for which the physical conditions in
the convection zone are expected to be very different. Furthermore,
given that HD 187547 is metal overabundant in comparison with the
Sun, the observed amplitude is expected to be higher3,25 than predicted
from simple scaling, which is indeed the case. The power of a mode is
directly proportional to the mode lifetime provided that the energy
supply rate over the mode inertia is constant26, which further supports
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Figure 1 | Fourier amplitude spectra of the Kepler light curve of
HD 187547. a, Fourier spectrum covering the entire frequency range in which
significant signals were observed with a dominant frequency at 251mHz and an
amplitude of 2 mmag, typical for a d Sct star. b, The multimode oscillations of
HD 187547 are shown by subtracting 16 sinusoids corresponding to the most
prominent oscillations, revealing a large number of additional significant
frequencies. c, The region between 500 and 850mHz shows a clear pattern of
roughly equally spaced peaks, which we interpret as high-order consecutive
radial overtones. The comb-like structure expected for high-order radial

overtones is clearly visible. The broadened peaks suggest damped/re-excited
solar-like oscillations. The black arrows denoted Dn indicate the large
separation between consecutive radial and dipole modes. d, Spectral window.
The shape of the window function is defined by the length and sampling of the
data set. Any coherent signal will have the same profile. e, Example for one of
the modes driven by the opacity mechanism in HD 187547. f, A supposed solar-
like oscillation mode observed in HD 187547, displaying a broadened structure
suggestive of a short mode lifetime.
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coherent, opacity-driven peaks at low frequencies. The time-fourier spectrum
was computed with a running filter of full-width at half-maximum 5 5 days,
comparable to the mean mode lifetime. a, An opacity-driven mode (the same as
in Fig. 1e) showing temporal stability in the d Sct frequency region. b, Stochastic
mode observed in HD 187547, showing an erratic behaviour as expected for
solar-like oscillations (the same as in Fig. 1f). c, For comparison, a stochastic
oscillation mode observed in the Sun. The solar data were obtained from the
SOHO VIRGO instrument. The data set has the same length and sampling as
for HD 187547; that is, 30 days and 1 min, respectively. Further details of
frequency analyses and tests on artificial data sets (Supplementary Fig. 1) to
verify our interpretation are in the Supplementary Information.
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the higher amplitude because the observed mode lifetimes are also
longer than expected. An additional factor that is not considered in
any scaling relations is the chemical peculiarity of our target. In sum-
mary, these factors make HD 187547 an intriguing case for further
theoretical analyses of stochastic oscillations and the potential inter-
action with the opacity mechanism in d Sct stars.

The amplitude distribution for stochastic pulsation can be described
as a Rayleigh distribution, provided that the examined time series are
much shorter than the mode lifetimes. The relation between the mean
amplitude ÆAæ and its standard deviation s(A) can then be written as27

(4/p 2 1)0.5ÆAæ < 0.52ÆAæ. This is not valid for opacity-driven pulsa-
tion. For HD 187547 we therefore expect to obtain two different
regimes of the ratio s(A)/ÆAæ for the two groups of oscillation modes
(Supplementary Fig. 2). Indeed, we see that the d Sct frequencies have a
lower value of s(A)/ÆAæ than the supposed solar-like modes, giving
further evidence for the stochastic nature of the latter (see Supplemen-
tary Information for details).

We cannot strictly exclude the possibility that the signals between
578 and 868mHz are due to unresolved modes of pulsation excited by
the opacity mechanism, because high-radial-order acoustic modes can
also be observed in hot d Sct stars. Nevertheless, as shown in Fig. 1 this
would imply that d Sct pulsation covers the region between 205 and
870mHz continuously. According to current theory, the opacity mech-
anism acting in the He II ionization zone cannot excite modes spanning
16 radial orders for a star with parameters like those of HD 187547
(ref. 28). Further support for the discovery of solar-like oscillations
comes from spectroscopic observations that also indicate the presence
of convective motions in the atmospheres of A and Am stars29. In
addition, signatures of granulation noise in d Sct stars have been

reported from photometric measurements3. Opacity-driven pulsations
are also observed in more massive stars (8–16M[), known as bCephei
stars (in this case the opacity mechanism acts in the ionization region
of the iron-group elements). The unexpected detection of solar-like
oscillations in such a star30 (with a mass of 10M[) suggests that
both types of pulsation, opacity-driven and stochastically excited,
can coexist and can have overlapping frequency domains. The similar
timescales of the different oscillation types imply a possible interaction
between the two mechanisms.
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ABSTRACT

We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data
consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new
method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking
the power spectrum in a so-called échelle diagram reveals two clear ridges, which we identify with even
and odd values of the angular degree (l = 0 and 2, and l = 1 and 3, respectively). We interpret a strong,
narrow peak at 446 μHz that lies close to the l = 1 ridge as a mode with mixed character. We show that the
frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular,
variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth
of ∼1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range
comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary
comparison with published models shows that the offset between observed and calculated frequencies for the
radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of
the modes in Procyon to be 1.29+0.55

−0.49 days, which is significantly shorter than the 2–4 days seen in the Sun.

Key words: stars: individual (Procyon A) – stars: oscillations
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1. INTRODUCTION

The success of helioseismology and the promise of asteroseis-
mology have motivated numerous efforts to measure oscillations
in solar-type stars. These began with ground-based observations
(for recent reviews see Bedding & Kjeldsen 2007; Aerts et al.
2008) and now extend to space-based photometry, particularly
with the CoRoT and Kepler Missions (e.g., Michel et al. 2008;
Gilliland et al. 2010).

We have carried out a multi-site spectroscopic campaign
to measure oscillations in the F5 star Procyon A (HR 2943;
HD 61421; HIP 37279). We obtained high-precision velocity
observations over more than three weeks with 11 telescopes,
with almost continuous coverage for the central 10 days. In
Arentoft et al. (2008, hereafter Paper I) we described the details
of the observations and data reduction, measured the mean
oscillation amplitudes, gave a crude estimate for the mode
lifetime and discussed slow variations in the velocity curve
that we attributed to rotational modulation of active regions.
In this paper, we describe the procedure used to extract the
mode parameters, provide a list of oscillation frequencies, and
give an improved estimate of the mode lifetimes.

2. PROPERTIES OF SOLAR-LIKE OSCILLATIONS

We begin with a brief summary of the relevant properties
of solar-like oscillations (for reviews see, for example, Brown
& Gilliland 1994; Bedding & Kjeldsen 2003; Christensen-
Dalsgaard 2004).

To a good approximation, in main-sequence stars the cyclic
frequencies of low-degree p-mode oscillations are regularly
spaced, following the asymptotic relation (Tassoul 1980; Gough
1986):

νn,l ≈ Δν(n + 1
2 l + ε) − l(l + 1)D0. (1)

Here, n (the radial order) and l (the angular degree) are integers,
Δν (the large separation) depends on the sound travel time
across the whole star, D0 is sensitive to the sound speed near
the core and ε is sensitive to the reflection properties of the
surface layers. It is conventional to define three so-called small
frequency separations that are sensitive to the sound speed in the
core: δν02 is the spacing between adjacent modes with l = 0 and
l = 2 (for which n will differ by 1); δν13 is the spacing between
adjacent modes with l = 1 and l = 3 (ditto); and δν01 is the
amount by which l = 1 modes are offset from the midpoint of
the l = 0 modes on either side.33 To be explicit, for a given
radial order, n, these separations are defined as follows:

δν02 = νn,0 − νn−1,2, (2)

δν01 = 1
2 (νn,0 + νn+1,0) − νn,1, (3)

δν13 = νn,1 − νn−1,3. (4)

If the asymptotic relation (Equation (1)) were to hold exactly,
it would follow that all of these separations would be indepen-
dent of n and that δν02 = 6D0, δν13 = 10D0, and δν01 = 2D0.
In practice, Equation (1) is only an approximation. In the Sun
and other stars, theoretical models and observations show that

33 One can also define an equivalent quantity, δν10, as the offset of l = 0
modes from the midpoint between the surrounding l = 1 modes, so that
δν10 = νn,0 − 1

2 (νn−1,1 + νn,1).

Δν, D0, and ε vary somewhat with frequency, and also with l.
Consequently, the small separations also vary with frequency.

The mode amplitudes are determined by the excitation
and damping, which are stochastic processes involving near-
surface convection. We typically observe modes over a range
of frequencies, which in Procyon is especially broad (about
400–1400 μHz; see Paper I). The observed amplitudes also de-
pend on l via various projection factors (see Table 1 of Kjeldsen
et al. 2008a). Note, in particular, that velocity measurements
are much more sensitive to modes with l = 3 than are intensity
measurements. The mean mode amplitudes are modified for a
given observing run by the stochastic nature of the excitation,
resulting in considerable scatter of the peak heights about the
envelope.

Oscillations in the Sun are long-lived compared to their
periods, which allows their frequencies to be measured very
precisely. However, the lifetime is not infinite and the damping
results in each mode in the power spectrum being split into
multiple peaks under a Lorentzian profile. The FWHM of this
Lorentzian, which is referred to as the linewidth Γ, is inversely
proportional to the mode lifetime: Γ = 1/(πτ ). We follow the
usual definition that τ is the time for the mode amplitude to
decay by a factor of e. The solar value of τ for the strongest
modes ranges from 2 to 4 days, as a decreasing function of
frequency (e.g., Chaplin et al. 1997).

Procyon is an evolved star, with theoretical models showing
that it is close to, or just past, the end of the main sequence (e.g.,
Guenther & Demarque 1993; Barban et al. 1999; Chaboyer
et al. 1999; Di Mauro & Christensen-Dalsgaard 2001; Kervella
et al. 2004; Eggenberger et al. 2005; Provost et al. 2006;
Bonanno et al. 2007; Guenther et al. 2008). As such, its
oscillation spectrum may show deviations from the regular
comb-like structure described by Equation (1), especially at low
frequencies. This is because some modes, particularly those with
l = 1, are shifted by avoided crossings with gravity modes in
the stellar core (also called “mode bumping”; see Osaki 1975;
Aizenman et al. 1977). These so-called “mixed modes” have
p-mode character near the surface but g-mode character in the
deep interior. Some of the theoretical models of Procyon cited
above indeed predict these mixed modes, depending on the
evolutionary state of the star, and we must keep this in mind
when attempting to identify oscillation modes in the power
spectrum. The mixed modes are rich in information because
they probe the stellar core and are very sensitive to age, but they
complicate the task of mode identification.

We should also keep in mind that mixed modes are expected to
have lower amplitudes and longer lifetimes (smaller linewidths)
than regular p-modes because they have larger mode inertias
(e.g., Christensen-Dalsgaard 2004). Hence, for a data series that
is many times longer than the lifetime of the pure p-modes, a
mixed mode may appear in the power spectrum as a narrow peak
that is higher than the others, even though its power (amplitude
squared) is not especially large.

Another potential complication is that stellar rotation causes
modes with l � 1 to split into multiplets. The peaks of these
multiplets are characterized by the azimuthal degree m, which
takes on values of m = 0,±1, . . . ,±l, with a separation that
directly measures the rotation rate averaged over the region
of the star that is sampled by the mode. The measurements
are particularly difficult because a long time series is needed to
resolve the rotational splittings. We argue in Appendix A that the
low value of v sin i observed in Procyon implies that rotational
splitting of frequencies is not measurable in our observations.
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Figure 1. Weights for time series of velocity observations of Procyon, optimized to minimize: (a) the noise level and (b) the height of the sidelobes.

3. WEIGHTING THE TIME SERIES

The time series of velocity observations was obtained over 25
days using 11 telescopes at eight observatories and contains just
over 22,500 data points. As discussed in Paper I, the velocity
curve shows slow variations that we attribute to a combination
of instrumental drifts and rotational modulation of stellar active
regions. We have removed these slow variations by subtracting
all the power below 280 μHz, to prevent spectral leakage into
higher frequencies that would degrade the oscillation spectrum.
We take this high-pass-filtered time series of velocities, together
with their associated measurement uncertainties, as the starting
point in our analysis.

3.1. Noise-optimized Weights

Using weights when analyzing ground-based observations of
stellar oscillations (e.g., Gilliland et al. 1993; Frandsen et al.
1995) allows one to take into account the significant variations
in data quality during a typical observing campaign, especially
when two or more telescopes are used. The usual practice,
which we followed in Paper I, is to calculate the weights for
a time series from the measurement uncertainties, σi , according
to wi = 1/σ 2

i .
These “raw” weights can then be adjusted to minimize the

noise level in the final power spectrum by identifying and
revising those uncertainties that are too optimistic, and at the
same time rescaling the uncertainties to be in agreement with
the actual noise levels in the data. This procedure is described
in Paper I and references therein. The time series of these noise-
optimized weights is shown in Figure 1(a). These are the same
as those shown in Figure 1(d) of Paper I, but this time as weights
rather than uncertainties.

The power spectrum of Procyon based on these noise-
optimized weights is shown in Figure 2(a). This is the same
as shown in Paper I (lower panel of Figure 6), except that the
power at low frequencies, which arises from the slow variations,
has been removed. As described in Paper I, the noise level
above 3 mHz in this noise-optimized spectrum is 1.9 cm s−1 in
amplitude. This includes some degree of spectral leakage from
the oscillations and if we high-pass filter the spectrum up to
3 mHz to remove the oscillation signal, the noise level drops to
1.5 cm s−1 in amplitude.

The task of extracting oscillation frequencies from the power
spectrum is complicated by the presence of structure in the
spectral window, which are caused by gaps or otherwise uneven
coverage in the time series. The spectral window using the
noise-optimized weights is shown in Figure 3(a). Prominent
sidelobes at ±11.57 μHz correspond to aliasing at one cycle
per day. Indeed, the prospect of reducing these sidelobes is
the main reason for acquiring multi-site observations. However,
even with good coverage the velocity precision varies greatly,
both for a given telescope during the run and from one telescope
to another (see Figure 1(a)). As pointed out in Paper I, using
these measurement uncertainties as weights has the effect of
increasing the sidelobes in the spectral window. We now discuss
a technique for addressing this issue.

3.2. Sidelobe-optimized Weights

Adjusting the weights allows one to suppress the sidelobe
structure; the trade-off is an increase in the noise level. This
technique is routinely used in radio astronomy when synthesiz-
ing images from interferometers (e.g., Högbom & Brouw 1974).
An extreme case is to set all weights to be equal, which is the
same as not using weights at all. This is certainly not optimal
because it produces a power spectrum with greatly increased
noise (by a factor of 2.3) but still having significant sidelobes,
as can be seen in Figure 6(a) of Paper I. Adjusting the weights
on a night-by-night basis in order to minimize the sidelobes
was used in the analysis of dual-site observations of α Cen A
(Bedding et al. 2004), α Cen B (Kjeldsen et al. 2005), and β Hyi
(Bedding et al. 2007). For our multi-site Procyon data, this is
impractical because of the large number of (partly overlapping)
telescope nights. We have developed a more general algorithm
for adjusting weights to minimize the sidelobes (H. Kjeldsen
et al. 2010, in preparation). The new method, which is superior
because it does not assume the oscillations are coherent over the
whole observing run, is based on the principle that equal weight
is given to all segments of the time series. The method produces
the cleanest possible spectral window in terms of suppressing
the sidelobes, and we have tested it with good results using pub-
lished data for α Cen A and B and β Hyi (Arentoft et al. 2010).

The new method operates with two timescales, T1 and T2. All
data segments of length T1 (=2 hr, in this case) are required to
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Figure 2. Power spectrum of oscillations in Procyon: (a) using the noise-optimized weights; (b) using the sidelobe-optimized weights; (c) using the sidelobe-optimized
weights and smoothing by convolution with a Gaussian with FWHM 2 μHz.

Figure 3. Spectral window for the Procyon observations using (a) noise-
optimized weights and (b) sidelobe-optimized weights.

have the same total weight throughout the time series, with the
relaxing condition that variations on timescales longer than T2
(=12 hr) are retained. To be explicit, the algorithm works as
follows. We adjust the weights so that all segments of length T1
have the same total weight. That is, for each point wi in the time
series of weights, define {Si} to be the set of weights in a segment
of width T1 centered at that time stamp, and divide each wi by
the sum of the weights in {Si}. However, this adjustment suffers
from edge effects, since it gives undue weight to points adjacent
to a gap. To compensate, we also divide by an asymmetry factor

R = 1 +

∣∣∣∣
Σleft − Σright

Σleft + Σright

∣∣∣∣ . (5)

Here, Σleft is the sum of the weights in the segment {Si} that
have time stamps less than ti, and Σright is the sum of the
weights in the segment {Si} that have time stamps greater than
ti. Note that R ranges from 1, for points that are symmetrically
placed in their T bin, up to 2 for points at one edge of a
gap.

Once the above procedure is done for T1, which is the shortest
timescale on which we wish to adjust the weights, we do it again
with T2, which is the longest timescale for adjusting the weights.
Finally, we divide the first set of adjusted weights by the second
set, and this gives the weights that we adopt (Figure 1(b)).

3.3. The Sidelobe-optimized Power Spectrum

Figure 2(b) shows the power spectrum of Procyon based
on the sidelobe-optimized weights. The spectral window has
improved tremendously (Figure 3(b)), while the noise level at
high frequencies (above 3 mHz) has increased by a factor of 2.0.

The power spectrum now clearly shows a regular series
of peaks, which are even more obvious after smoothing
(Figure 2(c)). We see that the large separation of the star
is about 55 μHz, confirming the value indicated by sev-
eral previous studies (Mosser et al. 1998; Martić et al. 1999,
2004; Eggenberger et al. 2004; Régulo & Roca Cortés 2005;
Leccia et al. 2007; Guenther et al. 2008). The very strong peak
at 446 μHz appears to be a candidate for a mixed mode, espe-
cially given its narrowness (see Section 2).

Plotting the power spectrum in échelle format using a large
separation of 56 μHz (Figure 4) clearly shows two ridges, as



No. 2, 2010 MEASURING SOLAR-LIKE OSCILLATIONS IN PROCYON. II. 939

Figure 4. Power spectrum of Procyon in échelle format using a large separation
of 56 μHz, based on the sidelobe-optimized weights. Two ridges are clearly
visible. The upper parts are vertical but the lower parts are tilted, indicating
a change in the large separation as a function of frequency. The orders are
numbered sequentially on the right-hand side.

expected.34 The upper parts are vertical but the lower parts
are tilted, indicating a change in the large separation as a
function of frequency. This large amount of curvature in the
échelle diagram goes a long way toward explaining the lack of
agreement between previous studies on the mode frequencies
of Procyon (see the list of references given in the previous
paragraph).

The advantage of using the sidelobe-optimized weights is
demonstrated by Figure 5. This is the same as Figure 4 but for
the noise-optimized weights and the ridges are no longer clearly
defined.

4. IDENTIFICATION OF THE RIDGES

We know from asymptotic theory (see Equation (1)) that one
of the ridges in the échelle diagram (Figure 4) corresponds to
modes with even degree (l = 0 and 2) and the other to modes
with odd degree (l = 1 and 3). However, it is not immediately
obvious which is which. We also need to keep in mind that
the asymptotic relation in evolved stars does not hold exactly.
We designate the two possibilities Scenario A, in which the
left-hand ridge in Figure 4 corresponds to modes with odd
degree, and Scenario B, in which the same ridge corresponds
to modes with even degree. Figure 6 shows the Procyon power
spectrum collapsed along several orders. We now see double
peaks that suggest the identifications shown, which corresponds
to Scenario B.

34 When making an échelle diagram, it is common to plot ν versus
(ν mod Δν), in which case each order slopes slightly upward. However, for
gray-scale images, it is preferable to keep the orders horizontal, as was done in
the original presentation of the diagram (Grec et al. 1983). We have followed
that approach in this paper, and the value given on the vertical axis indicates
the frequency at the middle of each order.

Figure 5. Same as Figure 4, but for the noise-optimized weights. The sidelobes
from daily aliasing mean that the ridges can no longer be clearly distinguished.

Figure 6. Power spectrum of Procyon collapsed along several orders. Note that
the power spectrum was first smoothed slightly by convolving with a Gaussian
with FWHM 0.5 μHz. The dotted lines are separated by exactly Δν/2, to guide
the eye in assessing the 0–1 small separation.

We can check that the small separation δν01 has the expected
sign. According to asymptotic theory (Equation (1)), each l = 1
mode should be at a slightly lower frequency than the midpoint
of the adjacent l = 0 modes. This is indeed the case for the
identifications given in Figure 6, but would not be if the even
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Figure 7. Échelle diagram for Procyon smoothed to 2 μHz (grayscale) overlaid
with scaled frequencies for two stars observed by CoRoT. The filled symbols are
oscillation frequencies for HD 49385 reported by Deheuvels et al. (2010), after
multiplying by 0.993. Open symbols are oscillation frequencies for HD 49933
from the revised identification by Benomar et al. (2009b, Scenario B) after
multiplying by 0.6565. Symbol shapes indicate mode degree: l = 0 (circles),
l = 1 (triangles), and l = 2 (squares).

and odd degrees were reversed. We should be careful, however,
since δν01 has been observed to have the opposite sign in red
giant stars (Carrier et al. 2010; Bedding et al. 2010).

The problem of ridge identification in F stars was first
encountered by Appourchaux et al. (2008) when analyzing
CoRoT observations of HD 49933 and has been followed up by
numerous authors (Benomar et al. 2009a, 2009b; Gruberbauer
et al. 2009; Mosser & Appourchaux 2009; Roxburgh 2009;
Kallinger et al. 2010). Two other F stars observed by CoRoT
have presented the same problem, namely HD 181906 (Garcı́a
et al. 2009) and HD 181420 (Barban et al. 2009). A discussion
of the issue was recently given by Bedding & Kjeldsen (2010),
who proposed a solution to the problem that involves comparing
two (or more) stars on a single échelle diagram after first scaling
their frequencies.

Figure 7 shows the échelle diagram for Procyon overlaid
with scaled frequencies for two stars observed by CoRoT, using
the method described by Bedding & Kjeldsen (2010). The
filled symbols are scaled oscillation frequencies for the G0 star
HD 49385 observed by CoRoT (Deheuvels et al. 2010). The
scaling involved multiplying all frequencies by a factor of 0.993
before plotting them, with this factor being chosen to align the
symbols as closely as possible with the Procyon ridges. For this
star, the CoRoT data gave an unambiguous mode identification,
which is indicated by the symbol shapes. This confirms that the
left-hand ridge of Procyon corresponds to modes with even l
(Scenario B).

The open symbols in Figure 7 are oscillation frequencies for
HD 49933 from the revised identification by Benomar et al.
(2009b, Scenario B), after multiplying by a scaling factor of

Figure 8. Order-averaged power spectrum (OAPS), where smoothing was done
with a FWHM of 4.0 orders (see the text). The OAPS is plotted for three values
of the large separations (54, 55, and 56 μHz), and we see that the positions of
the maxima are not very sensitive to the value of Δν.

0.6565. The alignment with HD 49385 was already demon-
strated by Bedding & Kjeldsen (2010). We show HD 49933 here
for comparison and to draw attention to the different amounts
of bending at the bottom of the right-hand (l = 1) ridge for the
three stars. The CoRoT target that is most similar to Procyon is
HD170987 but unfortunately the signal-to-noise ratio (S/N) is
too low to provide a clear identification of the ridges (Mathur
et al. 2010).

The above considerations give us confidence that Scenario B
in Procyon is the correct identification, and we now proceed on
that basis.

5. FREQUENCIES OF THE RIDGE CENTROIDS

Our next step in the analysis was to measure the centroids
of the two ridges in the échelle diagram. We first removed the
strong peak at 446 μHz (it was replaced by the mean noise
level). We believe this to be a mixed mode and its extreme
power means that it would significantly distort the result. We
then smoothed the power spectrum to a resolution of 10 μHz
(FWHM). To further improve the visibility of the ridges, we also
averaged across several orders, which corresponds to smoothing
in the vertical direction in the échelle diagram (Bedding et al.
2004; Kjeldsen et al. 2005; Karoff 2007). That is, for a given
value of Δν, we define the “order-averaged” power spectrum
to be

OAPS(ν, Δν) =
4∑

j=−4

cj PS(ν + jΔν). (6)

The coefficients cj are chosen to give a smoothing with a FWHM
of kΔν:

cj = c−j = 1

1 + (2j/k)2
. (7)

We show in Figure 8 the OAPS based on smoothing over 4 orders
(k = 4.0), and so we used (c0, . . . , c4) = (1, 0.8, 0.5, 0.31, 0.2).
The OAPS is plotted for three values of the large separations
(54, 55, and 56 μHz), and they are superimposed. The three
curves are hardly distinguishable, and we see that the positions
of the maxima are not sensitive to the value of Δν.

We next calculated a modified version of the OAPS in which
the value at each frequency is the maximum value of the OAPS
over a range of large separations (53–57 μHz). This is basically
the same as the comb response, as used previously by several
authors (Kjeldsen et al. 1995; Mosser et al. 1998; Martić et al.
1999; Leccia et al. 2007). The maxima of this function define
the centroids of the two ridges, which are shown in Figure 9.
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Figure 9. Centroids of the two ridges, as measured from the comb response.
The grayscale shows the sidelobe-optimized power spectrum from which the
peaks were calculated.

Figure 10. Power spectrum of Procyon collapsed along the ridges, over the
full range of oscillations (18 orders). The upper panel shows the left-hand ridge,
which we identify with modes having even degree, and the lower panel shows the
right-hand ridge (odd degree). Note that the power spectrum was first smoothed
slightly by convolving with a Gaussian with FWHM 0.6 μHz.

In Figure 10, we show the full power spectrum of Procyon
(using sidelobe-optimized weights) collapsed along the ridges.
This is similar to Figure 6 except that each order was shifted
before the summation, so as to align the ridge peaks (symbols
in Figure 9) and hence remove the curvature. This was done
separately for both the even- and odd-degree ridges, as shown
in the two panels of Figure 10. The collapsed spectrum clearly
shows the power corresponding to l = 0–3, as well as the
extra power from the mixed modes (for this figure, the peak at
446 μHz has not been removed).

Figure 11. Symbols show the frequency separations in Procyon as a function of
frequency, as measured from the ridge centroids: (a) large frequency separation,
(b) second differences, and (c) small frequency separation. The dotted lines
in panel a show the variation in Δν (with ±1σ range) calculated from the
autocorrelation of the time series—see the text.

In Section 6 below, we use the ridges to guide our iden-
tification of the individual modes. First, however, we show
that some asteroseismological inferences can be made solely
from the ridges themselves. This is explained in more detail in
Appendix B.

5.1. Large Separation of the Ridges

Figure 11(a) shows the variation with frequency of the large
separation for each of the two ridges (diamonds and triangles).
The smoothing across orders (Equation (6)) means that the
ridge frequencies are correlated from one order to the next and
so we used simulations to estimate uncertainties for the ridge
centroids.

The oscillatory behavior of Δν as a function of frequency
seen in Figure 11(a) is presumably a signature of the helium
ionization zone (e.g., Gough 1990). The oscillation is also seen
in Figure 11(b), which shows the second differences for the two
ridges, defined as follows (see Gough 1990; Ballot et al. 2004;
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Houdek & Gough 2007):

Δ2νn,even = νn−1,even − 2νn,even + νn+1,even, (8)

Δ2νn,odd = νn−1,odd − 2νn,odd + νn+1,odd. (9)

The period of the oscillation is ∼500 μHz, which implies a glitch
at an acoustic depth that is approximately twice the inverse
of this value (Gough 1990; Houdek & Gough 2007), namely
∼1000 s. To determine this more precisely, we calculated the
power spectrum of the second differences for both the odd and
even ridges, and measured the highest peak. We found the period
of the oscillation in the second differences to be 508 ± 18 μHz.
Comparing this result with theoretical models will be the subject
of a future paper.

The dotted lines in Figure 11(a) show the variation of Δν with
frequency calculated from the autocorrelation of the time series
using the method of Mosser & Appourchaux (2009; see also
Roxburgh & Vorontsov 2006). The mixed mode at 446 μHz
was first removed and the smoothing filter had FWHM equal to
3 times the mean large separation. We see general agreement
with the values calculated from the ridge separations. Some
of the differences presumably arise because the autocorrelation
analysis of the time series averages the large separation over all
degrees.

5.2. Small Separation of the Ridges

Using only the centroids of the ridges, we can measure a small
separation that is useful for asteroseismology. By analogy with
δν01 (see Equation (3)), we define it as the amount by which the
odd ridge is offset from the midpoint of the two adjacent even
ridges, with a positive value corresponding to a leftward shift
(as observed in the Sun). That is,

δνeven,odd = νn,even + νn+1,even

2
− νn,odd. (10)

Figure 11(c) shows our measurements of this small separation.35

It is related in a simple way to the conventional small separations
δν01, δν02, and δν13 (see Appendix B for details) and so, like
them, it gives information about the sound speed in the core. Our
measurements of this small separation can be compared with
theoretical models using the equations in Appendix B (e.g., see
Christensen-Dalsgaard & Houdek 2009).

6. FREQUENCIES OF INDIVIDUAL MODES

We have extracted oscillation frequencies from the time series
using the standard procedure of iterative sine-wave fitting.
Each step of the iteration involves finding the strongest peak
in the sidelobe-optimized power spectrum and subtracting the
corresponding sinusoid from the time series. Figure 12 shows
the result. The two ridges are clearly visible but the finite mode
lifetime causes many modes to be split into two or more peaks.
We might also be tempted to propose that some of the multiple
peaks are due to rotational splitting but, as shown in Appendix A,
this is unlikely to be the case.

Deciding on a final list of mode frequencies with correct l
identifications is somewhat subjective. To guide this process,
we used the ridge centroids shown in Figure 9 as well as

35 We could also define a small separation δνodd,even to be the amount by
which the centroid of the even ridge is offset rightward from the midpoint of
the adjacent odd ridges. This gives similar results.

Figure 12. Peaks extracted from sidelobe-optimized power spectrum using
iterative sine-wave fitting. Symbol size is proportional to amplitude (after the
background noise has been subtracted). The grayscale shows the sidelobe-
optimized power spectrum on which the fitting was performed, to guide the
eye.

the small separations δν02 and δν13 from the collapsed power
spectrum (see Figures 6 and 10). Each frequency extracted
using iterative sine-wave fitting that lay close to a ridge was
assigned an l value and multiple peaks from the same mode
were averaged. The final mode frequencies are listed in Table 1,
while peaks with S/N � 3.5 that we have not identified are
listed in Table 2. Figures 13 and 14 show these peaks overlaid
on the sidelobe-optimized power spectrum. Figure 15 shows the
three small separations (Equations (2)–(4)) as calculated from
the frequencies listed in Table 1. The uncertainties in the mode
frequencies are shown in parentheses in Table 1. These depend
on the S/N of the peak and were calibrated using simulations
(e.g., see Bedding et al. 2007).

The entries in Table 2 are mostly false peaks due to noise and
to residuals from the iterative sine-wave fitting, but may include
some genuine modes. To check whether some of them may be
daily aliases of each other or of genuine modes, we calculated
the differences of all combinations of frequencies in Tables 1
and 2. The histogram of these pairwise differences was flat in
the vicinity of 11.6 μHz and showed no excess, confirming
that daily aliases do not contribute significantly to the list of
frequencies in the tables.

We also checked whether the number peaks in Table 2 agrees
with expectations. We did this by analyzing a simulated time
series that matched the observations in terms of oscillations
properties (frequencies, amplitudes, and mode lifetimes), noise
level, window function, and distribution of weights. We ex-
tracted peaks from the simulated power spectrum using iterative
sine-wave fitting, as before, and found the number of “extra”
peaks (not coinciding with the oscillation ridges) to be similar
to that seen in Figure 12. Finally, we remark that the peak at
408 μHz is a candidate for a mixed mode with l = 1, given that
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Table 1
Oscillation Frequencies in Procyon (in μHz)

Order l = 0 l = 1 l = 2 l = 3

4 . . . 331.3 (0.8) . . . . . .

5 . . . 387.7 (0.7) . . . . . .

6 415.5 (0.8) 445.8 (0.3) 411.7 (0.7) . . .

7 466.5 (1.0) 498.6 (0.7) 464.5 (0.9) 488.7 (0.9)
8 . . . 551.5 (0.7) . . . 544.4 (0.9)
9 576.0 (0.7) 608.2 (0.5) . . . . . .

10 630.7 (0.6) 660.6 (0.7) 627.0 (1.1) 653.6 (0.8)
11 685.6 (0.7) 712.1 (0.5) 681.9 (0.7) . . .

12 739.2 (0.7) 766.5 (0.5) 736.2 (0.5) . . .

13 793.7 (0.9) 817.2 (0.6) 792.3 (0.9) . . .

14 849.1 (0.7) 873.5 (0.6) 845.4 (0.6) 869.5 (0.6)
15 901.9 (0.8) 929.2 (0.7) . . . 926.6 (0.6)
16 957.8 (0.6) 985.3 (0.7) 956.4 (0.5) 980.4 (0.9)
17 1015.8 (0.6) 1040.0 (0.7) . . . 1034.5 (0.7)
18 1073.9 (0.7) 1096.5 (0.7) 1068.5 (0.7) . . .

19 1126.7 (0.5) 1154.6 (0.9) 1124.3 (0.9) . . .

20 1182.0 (0.7) 1208.5 (0.6) 1179.9 (1.0) . . .

21 1238.3 (0.9) 1264.6 (1.0) 1237.0 (0.8) . . .

22 1295.2 (1.0) . . . 1292.8 (1.0) . . .

23 1352.6 (1.1) 1375.7 (1.0) 1348.2 (1.0) . . .

it lies in the same order as the previously identified mixed mode
at 446 μHz (note that we expect one extra l = 1 mode to occur
at an avoided crossing).

The modes listed in Table 1 span 20 radial orders and more
than a factor of 4 in frequency. This range is similar to that
obtained from long-term studies of the Sun (e.g., Broomhall
et al. 2009) and is unprecedented in asteroseismology. It was
made possible by the unusually broad range of excited modes
in Procyon and the high S/N of our data. Since the stellar
background at low frequencies in intensity measurements is
expected to be much higher than for velocity measurements, it
seems unlikely that even the best data from the Kepler Mission
will return such a wide range of frequencies in a single target.

7. MODE LIFETIMES

As discussed in Section 2, if the time series is sufficiently
long then damping causes each mode in the power spectrum
to be split into a series of peaks under a Lorentzian envelope
having FWHM Γ = 1/(πτ ), where τ is the mode lifetime.
Our observations of Procyon are not long enough to resolve the
modes into clear Lorentzians, and instead we see each mode as
a small number of peaks (sometimes one). Furthermore, the
centroid of these peaks may be offset from the position of
the true mode, as illustrated in Figure 1 of Anderson et al.
(1990). This last feature allows one to use the scatter of
the extracted frequencies about smooth ridges in the échelle
diagram, calibrated using simulations, to estimate the mode
lifetime (Kjeldsen et al. 2005; Bedding et al. 2007). That method
cannot be applied to Procyon because the l = 0 and l = 2 ridges
are not well resolved and the l = 1 ridge is affected by mixed
modes.

Rather than looking at frequency shifts, we have estimated
the mode lifetime from the variations in mode amplitudes (again
calibrated using simulations). This method is less precise but has
the advantage of being independent of the mode identifications
(e.g., Leccia et al. 2007; Carrier et al. 2007; Bedding et al.
2007). In Paper I, we calculated the smoothed amplitude curve
for Procyon in 10 two-day segments and used the fluctuations
about the mean to make a rough estimate of the mode lifetime:

Table 2
Unidentified Peaks with S/N � 3.5

ν S/N
(μHz)

407.6 (0.8) 3.5
512.8 (0.8) 3.6
622.8 (0.6) 4.3
679.1 (0.7) 4.0
723.5 (0.6) 4.7
770.5 (0.7) 4.1
878.5 (0.6) 4.4
890.8 (0.7) 3.6
935.6 (0.7) 3.9
1057.2 (0.7) 3.7
1384.3 (0.7) 3.6

τ = 1.5+1.9
−0.8 days. We have attempted to improve on that estimate

by considering the amplitude fluctuations of individual modes,
as has been done for the Sun (e.g., Toutain & Fröhlich 1992;
Baudin et al. 1996; Chang & Gough 1998), but were not able to
produce well-calibrated results for Procyon.

Instead, we have measured the “peakiness” of the power
spectrum (see Bedding et al. 2007) by calculating the ratio
between the square of the mean amplitude of the 15 highest
peaks in the range 500–1300 μHz (found by iterative sine-wave
fitting) and the mean power in the same frequency range. The
value for this ratio from our observations of Procyon is 6.9. We
made a large number of simulations (3600) having a range of
mode lifetimes and with the observed frequency spectrum, noise
level, window function, and weights. Comparing the simulations
with the observations led to a mode lifetime for Procyon of
1.29+0.55

−0.49 days.
This agrees with the value found in Paper I but is more precise,

confirming that modes in Procyon are significantly more short-
lived than those of the Sun. As discussed in Section 2, the
dominant modes in the Sun have lifetimes of 2–4 days (e.g.,
Chaplin et al. 1997). The tendency for hotter stars to have shorter
mode lifetimes has recently been discussed by Chaplin et al.
(2009).

8. FITTING TO THE POWER SPECTRUM

Extracting mode parameters by fitting directly to the power
spectrum is widely used in helioseismology, where the time
series extends continuously for months or even years, and so the
individual modes are well resolved (e.g., Anderson et al. 1990).
Mode fitting has not been applied to ground-based observations
of solar-type oscillations because these data typically have
shorter durations and significant gaps. Global fitting has been
carried out on spacecraft data, beginning with the 50-day time
series of α Cen A taken with the WIRE spacecraft (Fletcher et al.
2006) and the 60-day light curve of HD 49933 from CoRoT
(Appourchaux et al. 2008). Our observations of Procyon are
much shorter than either of these cases but, given the quality of
the data and the spectral window, we considered it worthwhile
to attempt a fit.

Global fits to the Procyon power spectrum were made by
several of us. Here, we present results from a fit using a
Bayesian approach (e.g., Gregory 2005), which allowed us
to include in a straightforward way our prior knowledge of
the oscillation properties. The parameters to be extracted were
the frequencies, heights, and linewidths of the modes. To
obtain the marginal probability distributions of these parameters
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Figure 13. Power spectrum of Procyon at full resolution, with the orders in each column arranged from top to bottom, for easy comparison with the échelle diagrams.
Vertical dashed lines show the mode frequencies listed in Table 1 and dotted lines show the peaks that have not been identified, as listed in Table 2. The smooth curve
shows the global fit to the power spectrum for Scenario B (see Section 8).

and their associated uncertainties, we employed an Automated
Parallel Tempering Markov Chain Monte Carlo (APT MCMC)

algorithm. It implements the Metropolis–Hastings sampler by
performing a random walk in parameter space while drawing
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Figure 14. Power spectrum of Procyon overlaid with mode frequencies listed
in Table 1. Symbols indicate angular degree (squares: l = 0; diamonds: l = 1;
crosses: l = 2; pluses: l = 3). Asterisks show the peaks that have not been
identified, as listed in Table 2.

samples from the posterior distribution (Gregory 2005). Further
details of our implementation of the algorithm will be given
elsewhere (T. L. Campante et al. 2010, in preparation).

The details of the fitting are as follows.

1. The fitting was performed over 17 orders (5–21) using the
sidelobe-optimized power spectrum. In each order, we fitted
modes with l = 0, 1, and 2, with each individual profile
being described by a symmetric Lorentzian with FWHM Γ
and height H. The mode frequencies were constrained to
lie close to the ridges and to have only small jumps from
one order to the next (a Gaussian prior with σ = 3 μHz).
The S/Ns of modes with l = 3 were too low to permit a fit.
In order to take their power into account, we included them
in the model with their frequencies fixed by the asymptotic
relation (Equation (1)).

2. The data are not good enough to provide a useful estimate
of the linewidth of every mode, or even of every order.
Therefore, the linewidth was parameterized as a linear
function of frequency, defined by two parameters Γ600 and
Γ1200, which are the values at 600 and 1200 μHz. These
parameters were determined by the fit, in which both were
assigned a uniform prior in the range 0–10 μHz.

3. The height of each mode is related to the linewidth and
amplitude according to (Chaplin et al. 2005):

H = 2A2

πΓ
. (11)

The amplitudes A of the modes were determined as follows.
For the radial modes (l = 0), we used the smoothed
amplitude curve measured from our observations, as shown
in Figure 10 of Paper I. The amplitudes of the non-radial
modes (l = 1–3) were then calculated from the radial

Figure 15. Small frequency separations in Procyon, as measured from the mode
frequencies listed in Table 1.

Table 3
Frequencies from Global Fit Using Scenario B (in μHz,

with −/+ Uncertainties)

Order l = 0 l = 1 l = 2

5 363.6 (0.8/0.9) 387.5 (0.6/0.6) 358.5 (1.3/1.2)
6 415.3 (3.3/1.0) . . . 408.1 (1.0/3.7)
7 469.7 (1.6/2.1) 498.8 (0.7/0.8) 465.3 (1.1/1.3)
8 522.3 (1.4/1.4) 551.6 (0.8/0.7) 519.0 (1.5/1.6)
9 577.0 (1.6/2.5) 607.6 (0.6/0.7) 573.9 (2.2/2.8)

10 631.3 (0.8/0.8) 660.3 (1.0/1.3) 627.4 (2.1/2.8)
11 685.6 (1.2/1.6) 714.7 (1.4/1.2) 681.2 (2.3/1.9)
12 740.1 (1.6/1.7) 768.6 (0.9/1.0) 737.0 (1.5/1.7)
13 793.2 (1.3/1.7) 820.0 (1.7/1.2) 790.9 (2.0/1.9)
14 847.3 (1.2/1.4) 872.7 (1.1/0.9) 844.7 (1.7/1.5)
15 901.0 (1.8/1.7) 927.5 (0.8/0.8) 898.6 (2.1/2.1)
16 958.7 (1.4/1.1) 983.9 (1.0/1.3) 957.2 (1.0/1.3)
17 1015.9 (1.5/1.8) 1039.5 (1.6/1.7) 1014.0 (1.8/2.4)
18 1073.2 (1.5/2.2) 1096.6 (1.1/1.0) 1070.3 (2.2/2.3)
19 1127.2 (1.0/1.3) 1151.8 (1.4/1.4) 1125.9 (1.3/1.4)
20 1182.3 (1.5/1.4) 1207.9 (1.4/1.1) 1180.5 (1.6/1.6)
21 1236.9 (1.7/1.6) 1267.4 (1.7/1.5) 1235.5 (2.0/1.7)

modes using the ratios given in Table 1 of Kjeldsen et al.
(2008a), namely, S0 : S1 : S2 : S3 = 1.00 : 1.35 : 1.02 :
0.47.

4. The background was fitted as a flat function.
5. We calculated the rotationally split profiles of the non-

radial modes using the description given by Gizon &
Solanki (2003). The inclination angle of the rotation axis
was fixed at 31◦, which is the inclination of the binary
orbit (Girard et al. 2000) and, as discussed in Paper I
(Section 4.1), is consistent with the rotational modulation
of the velocity curve. The rotational splitting was fixed at
0.7 μHz, which was chosen to match the observed value of
v sin i = 3.16 km s−1 (Allende Prieto et al. 2002), given
the known radius of the star. As discussed in Appendix A,
choosing different values for the inclination (and hence
the splitting) does not affect the mode profile, assuming
reasonable values of the linewidth.

We carried out the global fit using both scenarios discussed in
Section 4. The fit for Scenario B is shown as the smooth curve
in Figure 13 and the fitted frequencies are given in Table 3. Note
that the mixed mode at 446 μHz was not properly fitted because
it lies too far from the ridge (see point 1 above). To check the
agreement with the results discussed in Section 6, we examined
the differences betweens the frequencies in Tables 1 and 3. We
found a reduced χ2 of 0.74, which indicates good agreement. A
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Figure 16. Difference between observed frequencies of radial modes in Procyon
and those of scaled models. The symbols indicate different models, as follows:
squares from Chaboyer et al. (1999, Table 2), crosses from Di Mauro &
Christensen-Dalsgaard (2001), asterisks from Kervella et al. (2004, Table 4),
and triangles from Eggenberger et al. (2005, model M1a). In each case, the
dotted curve shows the correction calculated using Equation (4) of Kjeldsen
et al. (2008b).

value less than 1 is not surprising given that both methods were
constrained to find modes close to the ridges.

The fitted linewidths (assumed to be a linear function of
frequency, as described above) gave mode lifetimes of 1.5 ±
0.4 days at 600 μHz and 0.6 ± 0.3 days at 1200 μHz. These
agree with the single value of 1.29+0.55

−0.49 days found above
(Section 7), and indicate that the lifetime increases toward
lower frequencies, as is the case for the Sun and for the F-
type CoRoT targets HD 49933 (Benomar et al. 2009b) and HD
181420 (Barban et al. 2009).

We also carried out the global fit using Scenario A. We
found through Bayesian model selection that Scenario A was
statistically favored over Scenario B by a factor of 10:1. This
factor classifies as “significant” on the scale of Jeffreys (1961;
see Table 1 of Liddle 2009). On the same scale, posterior odds
of at least ∼13:1 are required for a classification of “strong to
very strong,” and “decisive” requires at least ∼150:1. In our
Bayesian fit to Procyon, the odds ratio in favor of Scenario A
did not exceed 13:1, even when different sets of priors were
imposed.

In light of the strong arguments given in Section 4 in favor of
Scenario B, we do not consider the result from Bayesian model
selection to be sufficiently compelling to cause us to reverse
our identification. Of course, it is possible that Scenario A is
correct and, for completeness, we show these fitted frequencies
in Table 4. The fit using Scenario A gave mode lifetimes of
0.9 ± 0.2 days at 600 μHz and 1.0 ± 0.3 days at 1200 μHz.

9. PRELIMINARY COMPARISON WITH MODELS

A detailed comparison of the observed frequencies of Procyon
with theoretical models is beyond the scope of this paper, but
we will make some preliminary comments on the systematic
offset between the two. It is well established that incorrect
modeling of the surface layers of the Sun is responsible for
discrepancies between the observed and calculated oscillation
frequencies (Christensen-Dalsgaard et al. 1988; Dziembowski
et al. 1988; Rosenthal et al. 1999; Li et al. 2002).

To address this problem for other stars, Kjeldsen et al.
(2008b) proposed an empirical correction to be applied to
model frequencies that takes advantage of the fact that the offset
between observations and models is independent of l and goes
to zero with decreasing frequency. They measured the offset for
the Sun to be a power law with exponent b = 4.9 and applied

Figure 17. Same as Figure 16, but with a constant near-surface correction
(b = 0).

Table 4
Frequencies from Global Fit Using Scenario A (in μHz,

with −/+ Uncertainties)

Order l = 0 l = 1 l = 2

5 387.7 (1.9/1.8) 361.9 (1.8/2.0) 385.1 (1.9/2.6)
6 . . . 412.5 (1.7/2.3) 439.3 (2.6/2.6)
7 498.7 (1.1/1.6) 467.6 (1.4/1.3) 493.2 (2.6/2.0)
8 552.2 (1.5/1.5) 520.7 (1.2/1.3) 549.3 (2.2/2.0)
9 607.8 (1.0/0.9) 576.2 (1.1/1.4) 605.4 (2.2/2.3)

10 661.3 (1.3/1.5) 631.1 (0.7/0.8) 657.1 (1.7/1.6)
11 716.8 (1.3/1.7) 684.7 (1.2/1.2) 712.6 (1.2/1.2)
12 769.9 (1.2/1.3) 739.1 (1.1/1.2) 766.6 (1.4/1.4)
13 822.7 (1.9/2.7) 792.9 (1.3/1.3) 817.8 (1.3/1.4)
14 874.5 (1.3/1.3) 846.4 (0.9/0.8) 869.9 (1.6/1.3)
15 928.8 (1.2/1.2) 900.0 (1.3/1.4) 925.9 (1.3/1.1)
16 985.1 (1.0/1.1) 958.2 (0.8/0.8) 980.9 (1.9/1.6)
17 1043.4 (2.8/2.8) 1015.7 (1.0/0.9) 1035.2 (1.0/0.8)
18 1097.6 (1.5/0.9) 1072.5 (1.1/1.2) 1091.8 (3.7/4.2)
19 1153.7 (0.9/0.8) 1126.9 (0.5/0.6) 1146.8 (1.3/1.0)
20 1209.1 (0.8/0.9) 1181.8 (1.0/0.9) 1204.8 (1.3/1.4)
21 1269.2 (1.0/1.1) 1237.1 (0.9/0.9) 1264.8 (1.5/1.5)

this correction to the radial modes of other stars, finding very
good results that allowed them to estimate mean stellar densities
very accurately (better than 0.5%).

We have applied this method to Procyon, comparing our ob-
served frequencies for the radial modes with various published
models to determine the scaling factor r and the offset (see
Kjeldsen et al. 2008b for details of the method). The results are
shown in Figure 16. Interestingly, the offset between the obser-
vations and scaled models does not go to zero with decreasing
frequency. This contrasts with the G- and K-type stars investi-
gated by Kjeldsen et al. (2008b), namely, the Sun, α Cen A and
B, and β Hyi.

The method of Kjeldsen et al. (2008b) assumes the correction
to be applied to the models to have the same form as in the Sun,
namely, a power law with an exponent of b = 4.9. The fit in
Figure 16 is poor and is not improved by modest adjustments to
b. Instead, the results seem to imply an offset that is constant.
Setting b = 0 and repeating the calculations produce the results
shown in Figure 17, where we indeed see a roughly constant
offset between the models and the observations of about 20 μHz.

As a check, we can consider the density implied for Procyon.
The stellar radius can be calculated from the interferometric
radius and the parallax. The angular diameter of 5.404 ±
0.031 mas (Aufdenberg et al. 2005, their Table 7) and the revised
Hipparcos parallax of 285.93 ± 0.88 mas (van Leeuwen 2007)
gives a radius of 2.041 ± 0.015 R�.
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Procyon is in a binary system (the secondary is a white dwarf),
allowing the mass to be determined from astrometry. Girard et al.
(2000) found a value of 1.497 ± 0.037 M�, while Gatewood &
Han (2006) found 1.431 ± 0.034 M� (see Guenther et al. 2008
for further discussion).

The density obtained using the fits shown in Figure 16 is in the
range 0.255–0.258 g cm−3. Combining with the radius implies
a mass in the range 1.54–1.56 M�. The density obtained using
the fits shown in Figure 17 is in the range 0.242–0.244 g cm−3,
implying a mass of 1.46–1.48 M�. The latter case seems to be
in much better agreement with the astrometrically determined
mass, lending some support to the idea that the offset is constant.

We can also consider the possibility that our mode identi-
fication is wrong and that Scenario A is the correct one (see
Sections 4 and 8). With this reversed identification, the radial
modes in Procyon are those in Table 1 listed as having l = 1.
Assuming these to be radial modes, the offset between them and
the model frequencies is again constant, as we would expect,
but this time with a mean value close to zero. The implied den-
sity for Procyon is again consistent with the observed mass and
radius.

The preceding discussion makes it clear that the correction
that needs to be applied to models of Procyon is very different
from that for the Sun and other cool stars, regardless of
whether Scenario B or A is correct. In particular, the substantial
nearly constant offset implied by Figure 16 would indicate
errors in the modeling extending well beyond the near-surface
layers. We also note that in terms of the asymptotic expression
(Equation (1)) a constant offset would imply an error in the
calculation of ε.

10. CONCLUSION

We have analyzed results from a multi-site campaign on
Procyon that obtained high-precision velocity observations over
more than three weeks (Paper I). We developed a new method
for adjusting the weights in the time series that allowed us to
minimize the sidelobes in the power spectrum that arise from
diurnal gaps and so to construct an échelle diagram that shows
two clear ridges of power. To identify the odd and even ridges,
we summed the power across several orders. We found structures
characteristic of l = 0 and 2 in one ridge and l = 1 and 3 in
the other. This identification was confirmed by comparing our
Procyon data in a scaled échelle diagram (Bedding & Kjeldsen
2010) with other stars for which the ridge identification is
known. We showed that the frequencies of the ridge centroids
and their large and small separations are easily measured and
are useful diagnostics for asteroseismology. In particular, an
oscillation in the large separation appears to indicate a glitch in
the sound-speed profile at an acoustic depth of ∼1000 s.

We identify a strong narrow peak at 446 μHz, which falls
slightly away from the l = 1 ridge, as a mixed mode. In
Table 1, we give frequencies, extracted using iterative sine-
wave fitting, for 55 modes with angular degrees l of 0–3.
These cover 20 radial orders and a factor of more than 4 in
frequency, which reflects the broad range of excited modes
in Procyon and the high S/N of our data, especially at low
frequencies. Intensity measurements will suffer from a much
higher stellar background at low frequencies, making it unlikely
that even the best data from the Kepler Mission will yield
the wide range of frequencies found here. This is a strong
argument in favor of continuing efforts toward ground-based
Doppler studies, such as the Stellar Observations Network
Group (SONG; Grundahl et al. 2008), which is currently under

construction, and the proposed Antarctic instrument Seismic
Interferometer to Measure Oscillations in the Interior of Stars
(SIAMOIS; Mosser et al. 2008).

We estimated the mean lifetime of the modes by comparing
the “peakiness” of the power spectrum with simulations and
found a value of 1.29+0.55

−0.49 days, significantly below that of the
Sun. A global fit to the power spectrum using Bayesian methods
confirmed this result and provided evidence that the lifetime
increases toward lower frequencies. It also casts some doubt
on the mode identifications. We still favor the identification
discussed above, but leave open the possibility that this may
need to be reversed. Finally, comparing the observed frequencies
of radial modes in Procyon with published theoretical models
showed an offset that appears to be constant with frequency,
making it very different from that seen in the Sun and other
cool stars. Detailed comparisons of our results with theoretical
models will be carried out in future papers.

We would be happy to make the data presented in this paper
available on request.
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APPENDIX A

ROTATIONAL SPLITTING

We expect non-radial modes to be split due to the ro-
tation of the star. The rotation period of Procyon is not
known, although slow variations in our velocity observations
(Paper I) indicated a value of either 10.3 days or twice that
value. The projected rotational velocity has been measured spec-
troscopically. Allende Prieto et al. (2002) determined a value of
v sin i = 3.16 ± 0.50 km s−1, although they note that the actual
value may be lower by about 0.5 km s−1.

Gizon & Solanki (2003) have studied the effect of rotation on
the profiles of solar-like oscillations as a function of inclination
and mode lifetime (see also Ballot et al. 2006). We have
repeated their calculations for our observations of Procyon (with
sidelobe-optimized weights). The results are shown in Figure 18,
which shows the effects of rotational splitting, inclination angle,
and mode lifetime on the theoretical profile of the modes.36 Note
that the calculations do not include the stochastic nature of the
excitation and so the function shown here should properly be
called the expectation value of the power spectrum, also known
as the limit spectrum. Figure 18 is similar to Figure 2 of Gizon &
Solanki (2003) except that instead of fixing the rotation period,
we have fixed v sin i to be the measured value. For l = 0, the
profile does not depend on the inclination angle, while for l = 1,
2, and 3 the solid and dashed lines show calculations for i = 30◦
(Prot = 16.4 days) and i = 80◦ (Prot = 32.3 days), respectively.
In each panel, results are shown for three values of the mode
lifetime: 1.5 days (top curve), 3 days (middle curve), and infinite
(bottom curve). For each mode lifetime, the curves for different
i and l are all normalized to have the same area.

36 Note that we have made the quite reasonable assumption that the internal
rotation has a similar period to the surface rotation.
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Figure 18. Theoretical line profiles showing rotational splitting for different mode degrees, similar to Figure 2 of Gizon & Solanki (2003) but here using a fixed value
of v sin i, namely 3.16 km s−1, as measured for Procyon (Allende Prieto et al. 2002). For l = 0, the profile does not depend on the inclination angle, while for l = 1,
2, and 3 the solid and dashed lines show calculations for i = 30◦ (Prot = 16.4 days) and i = 80◦ (Prot = 32.3 days), respectively. In each panel, results are shown for
three values of the mode lifetime: 1.5 days (top curve), 3 days (middle curve), and infinite (bottom curve). For each mode lifetime, the curves for different i and l are
all normalized to have the same area.

We see from Figure 18 that for a fixed v sin i, the width of
the profile stays roughly constant as a function of inclination.
If the rotation axis of the star happens to be in the plane of the
sky (i = 90◦), then the rotation period is too low to produce a
measurable splitting. At the other extreme, if the inclination is
small (so that the rotation is close to pole-on), then the rotational
splitting will be large but most of the power will be in the central
peak (m = 0). Either way, once the profile has been broadened
by the mode lifetime, the splitting will be unobservable.

We conclude that for realistic values of the mode lifetime, our
observations are not long enough to detect rotational splitting
in Procyon. The line profiles are broadened by rotation, but it is
not possible to disentangle the rotation rate from the inclination
angle. Rotational splitting is not measurable in Procyon, except
perhaps with an extremely long data set. The detection of
rotational splitting requires choosing a star with a larger v sin i
or a longer mode lifetime, or both.

APPENDIX B

RELATING RIDGE CENTROIDS TO MODE
FREQUENCIES

As discussed in Section 5, the frequencies of the ridge
centroids are useful for asteroseismology in cases where it is
difficult to resolve the ridges into their component modes. In
this appendix, we relate the frequencies of the ridge centroids
to those of the underlying modes, which allows us to express
the small separation of the ridges (Equation (10)) in terms of

the conventional small separations (δν01, δν02, and δν13). These
relationships will allow the observations to be compared with
theoretical models.

The ridge centroids depend on the relative contributions of
modes with l = 0, 1, 2, and 3. The power in the even ridge is
approximately equally divided between l = 0 and l = 2, while
the odd ridge is dominated by l = 1 but with some contribution
from l = 3. The exact ratios depend on the observing method, as
discussed by Kjeldsen et al. (2008a). For velocity measurements,
such as those presented in this paper for Procyon, the amplitude
ratios given by Kjeldsen et al. (2008a, their Table 1) yield the
following expressions for the centroids in power:

νvel
n,even = 0.49νn,0 + 0.51νn−1,2, (B1)

νvel
n,odd = 0.89νn,1 + 0.11νn−1,3, (B2)

where the superscript indicates these apply to velocity measure-
ments.

For photometric measurements, such as those currently being
obtained with the CoRoT and Kepler Missions, the relative
contributions from the various l values are different. Table 1
of Kjeldsen et al. (2008a) gives response factors for intensity
measurements in the three VIRGO passbands, namely, 402,
500, and 862 nm. For CoRoT and Kepler, it is appropriate to
use a central wavelength of 650 nm. Using the same method as
Kjeldsen et al. (2008a), we find the ratios (in amplitude) for this
case to be S0 : S1 : S2 : S3 = 1.00 : 1.23 : 0.71 : 0.14. The
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ridge centroids measured from such data would then be

ν650
n,even = 0.66νn,0 + 0.34νn−1,2, (B3)

ν650
n,odd = 0.99νn,1 + 0.01νn−1,3. (B4)

We can express the new small separation of the ridge centroids
(Equation (10)) in terms of the conventional ones. For velocity,
we have

δνvel
even,odd = δν01 − 0.51δν02 + 0.11δν13; (B5)

and for photometry, we have

δν650
even,odd = δν01 − 0.34δν02 + 0.01δν13. (B6)

Finally, we can express these in terms of D0 under the
assumption that the asymptotic relation (Equation (1)) holds
exactly, although in fact this is not likely to be the case:

δνvel
even,odd = 0.04D0 (B7)

and
δν650

even,odd = 0.06D0. (B8)
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Toutain, T., & Fröhlich, C. 1992, A&A, 257, 287
van Leeuwen, F. 2007, Hipparcos, the New Reduction of the Raw Data

(Dordrecht: Springer)



Appendix C

173



A&A 534, A6 (2011)
DOI: 10.1051/0004-6361/201116620
c© ESO 2011

Astronomy
&

Astrophysics

Asteroseismology from multi-month Kepler photometry:
the evolved Sun-like stars KIC 10273246 and KIC 10920273

T. L. Campante1 ,2, R. Handberg2, S. Mathur3, T. Appourchaux4, T. R. Bedding5, W. J. Chaplin6, R. A. García7,
B. Mosser8, O. Benomar4, A. Bonanno9, E. Corsaro9, S. T. Fletcher10, P. Gaulme4, S. Hekker6 ,11, C. Karoff2,

C. Régulo12 ,13, D. Salabert12 ,13, G. A. Verner6,14, T. R. White5 ,15, G. Houdek16, I. M. Brandão1, O. L. Creevey12,13,
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ABSTRACT

Context. The evolved main-sequence Sun-like stars KIC 10273246 (F-type) and KIC 10920273 (G-type) were observed with the
NASA Kepler satellite for approximately ten months with a duty cycle in excess of 90%. Such continuous and long observations are
unprecedented for solar-type stars other than the Sun.
Aims. We aimed mainly at extracting estimates of p-mode frequencies – as well as of other individual mode parameters – from the
power spectra of the light curves of both stars, thus providing scope for a full seismic characterization.
Methods. The light curves were corrected for instrumental effects in a manner independent of the Kepler science pipeline. Estimation
of individual mode parameters was based both on the maximization of the likelihood of a model describing the power spectrum and
on a classic prewhitening method. Finally, we employed a procedure for selecting frequency lists to be used in stellar modeling.
Results. A total of 30 and 21 modes of degree l = 0, 1, 2 – spanning at least eight radial orders – have been identified for KIC 10273246
and KIC 10920273, respectively. Two avoided crossings (l = 1 ridge) have been identified for KIC 10273246, whereas one avoided
crossing plus another likely one have been identified for KIC 10920273. Good agreement is found between observed and predicted
mode amplitudes for the F-type star KIC 10273246, based on a revised scaling relation. Estimates are given of the rotational periods,
the parameters describing stellar granulation and the global asteroseismic parameters Δν and νmax.

Key words. stars: oscillations – methods: data analysis – asteroseismology – stars: solar-type – stars: individual: KIC 10273246 –
stars: individual: KIC 10920273

1. Introduction

The NASA Kepler mission was designed to use the transit
method to detect Earth-like planets in and near the habitable
zones of late-type main-sequence stars (Borucki et al. 2010;
Koch et al. 2010). The satellite consists of a 0.95-m aperture

telescope with a CCD array and is capable of producing photo-
metric observations with a precision of a few parts-per-million
(ppm) during a period of 4–6 years. The high-quality data pro-
vided by Kepler are also well suited for conducting asteroseis-
mic studies of stars as part of the Kepler asteroseismic inves-
tigation (KAI; Gilliland et al. 2010a). Photometry of the vast
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Table 1. Information given in the Kepler input catalog.

Star 2MASS ID K p Teff Recalibrateda Teff log g [Fe/H] R
(K) (K) (dex) (dex) (R�)

KIC 10273246 19260576+4721300 10.90 6074 ± 200 6380 ± 76 4.2 ± 0.5 −0.3 ± 0.5 1.506
KIC10920273 19274576+4819454 11.93 5574 ± 200 5880 ± 53 4.1 ± 0.5 −0.4 ± 0.5 1.594

Notes. (a) A recalibration of the KIC photometry has posteriorly been performed by Pinsonneault et al. (in prep.).

majority of these stars is conducted at long cadence (29.4 min),
while a revolving selection of up to 512 stars are monitored
at short cadence (58.85 s). Short-cadence data allow us to in-
vestigate solar-like oscillations in main-sequence stars and sub-
giants, whose dominant periods are of the order of several min-
utes (Chaplin et al. 2010; Christensen-Dalsgaard et al. 2010;
Metcalfe et al. 2010).

The information contained in solar-like oscillations allows
fundamental stellar properties (e.g., mass, radius and age) to
be determined (e.g., Stello et al. 2009b; Christensen-Dalsgaard
et al. 2010; Kallinger et al. 2010a). The internal stellar structure
can be constrained to unprecedented levels, provided that indi-
vidual oscillation mode parameters are extracted (e.g., Cunha
et al. 2007). This is possible in the case of the highest signal-
to-noise ratio (SNR) observations, leading us to hope that astero-
seismology will produce significant improvement on the theories
related to stellar structure and evolution, on topics as diverse as
energy generation and transport, rotation and stellar cycles (e.g.,
Karoff et al. 2009; García et al. 2010).

Solar-like oscillations in a few tens of main-sequence stars
and subgiants have been previously measured using ground-
based high-precision spectroscopy (e.g., Bedding et al. 2010b)
and the space-based photometric mission CoRoT (e.g., Michel
et al. 2008). During the first seven months of Kepler science
operations, an asteroseismic survey of solar-type stars made it
possible to detect solar-like oscillations in about 500 targets
(Chaplin et al. 2011b). This constitutes an increase of one order
of magnitude in the number of such stars with confirmed oscilla-
tions. This large, homogeneous data sample opens the possibility
of conducting ensemble asteroseismology.

Since the start of Kepler science operations in 2009 May, a
selection of solar-type stars have been continuously monitored
at short cadence for more than seven months in order to test and
validate the time-series photometry. Such continuous and long
observations, also previously achieved by CoRoT (e.g., Benomar
et al. 2009b), are unprecedented for solar-type stars other than
the Sun. We present herein the analysis of two of these stars1,
namely, KIC 10273246 and KIC 10920273, both displaying rel-
atively low SNR in the p-mode peaks. Two other stars, namely,
KIC 11395018 and KIC 11234888, are analysed in a companion
paper (Mathur et al. 2011). The analysis of these four stars has
been conducted in a way so as to group together stars observed
for the same length of time.

The two solar-type stars selected for this study are relatively
faint (see Table 1) if we bear in mind that the apparent mag-
nitude target range for detection of solar-like oscillations with
Kepler spans K p ≈ 6.5 to K p ≈ 12.5 (see Fig. 5 of Chaplin
et al. 2011a). The Kepler Input Catalog2 (KIC; e.g., Latham et al.
2005; Batalha et al. 2010; Brown et al. 2011), from which all

1 Within the Kepler Asteroseismic Science Consortium (KASC),
KIC 10273246 is referred to as “Mulder” and KIC 10920273 as
“Scully”.
2 http://archive.stsci.edu/kepler/kepler_fov/search.
php

KASC targets have been selected, classifies KIC 10273246 as
an F-type star and KIC 10920273 as a G-type star (Table 1). The
atmospheric parameters provided by the KIC – as derived from
photometric observations acquired in the Sloan filters – do not
have sufficient precision for asteroseismology. Although we can
apply scaling relations to convert the KIC parameters of these
targets into predicted seismic and non-resonant background pa-
rameters, as well as fundamental stellar properties, caution is
needed if use is to be made of these derived quantities. Tighter
constraints on Teff , log g and [Fe/H] will be obtained from spec-
tra collected for these two targets with the FIES spectrograph at
the Nordic Optical Telescope (Creevey et al., in prep.).

The outline of the paper is as follows: we start in Sect. 2
by providing some background information on the properties of
solar-like oscillations. In Sect. 3 we give an overview of the dif-
ferent peak-bagging3 strategies employed and define a recipe for
selecting frequency lists. Section 4 is devoted to a thorough anal-
ysis of the power spectra of the time series. A summary and con-
clusions are presented in Sect. 5.

2. Properties of solar-like oscillations

Solar-like oscillations are predominantly global standing acous-
tic waves. These are p modes (pressure playing the role
of the restoring force) and are characterized by being in-
trinsically damped while simultaneously stochastically excited
by near-surface convection (e.g., Christensen-Dalsgaard 2004).
Therefore, all stars cool enough to harbor an outer convective
envelope – whose locus in the H-R diagram approximately ex-
tends from the cool edge of the Cepheid instability strip and in-
cludes the red giant branch – may be expected to exhibit solar-
like oscillations.

Modes of oscillation are characterized by three quantum
numbers: n, l and m. The radial order n characterizes the be-
havior of the mode in the radial direction. The degree l and the
azimuthal order m determine the spherical harmonic describing
the properties of the mode as a function of colatitude and lon-
gitude. In the case of stellar observations, the associated whole-
disk light integration and consequent lack of spatial resolution
strongly suppress the signal from all but the modes of the lowest
degree (with l ≤ 3). For a spherically symmetric non-rotating
star, mode frequencies depend only on n and l.

The observed modes of oscillation are typically high-order
acoustic modes. If interaction with a g mode (gravity playing
the role of the restoring force) can be neglected, linear, adia-
batic, high-order acoustic modes, in a spherically symmetric star,
satisfy an asymptotic relation for the frequencies (Vandakurov
1967; Tassoul 1980):

νnl∼Δν (n + l/2 + ε) − l(l + 1)D0, (1)

where the large frequency separation Δν is the inverse of the
sound travel time across the stellar diameter, ε is a phase mostly

3 The term peak-bagging refers to the extraction of individual mode
parameters from the power spectrum of a light curve.
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sensitive to the properties of the near-surface region, and D0 is
a parameter sensitive to the sound-speed gradient near the core.
The regular spacing of the frequency spectrum as conveyed by
Eq. (1) is a characteristic feature of solar-like oscillations. We
should, however, bear in mind that Eq. (1) is only an approxima-
tion. The large frequency separation does in fact depend both on
frequency and on mode degree, being defined as

Δνnl = νnl − νn−1 l≈Δν. (2)

It is also conventional to define a so-called small frequency sep-
aration, also varying with frequency:

δνnl = νnl − νn−1 l+2≈ (4l + 6)D0. (3)

The large frequency separation essentially scales with the square
root of the mean stellar density (e.g., Brown & Gilliland 1994).
Furthermore, the small frequency separation is sensitive to the
structure of the core, decreasing with increasing stellar age.
These two quantities thus have great diagnostic potential (e.g.,
Christensen-Dalsgaard 1993; Deheuvels et al. 2010b).

Sharp variations in the stellar interior cause detectable oscil-
latory signals in the frequencies, also visible in the behavior of
Δν as a function of frequency (e.g., Monteiro et al. 2000; Ballot
et al. 2004; Basu et al. 2004; Cunha & Metcalfe 2007; Houdek &
Gough 2007). These sharp features are mainly linked to borders
of convection zones and to regions of rapid variation in the sound
speed due to ionization of a dominant element. Their combined
signature is detectable in frequencies of low-degree modes and
such an analysis becomes possible in the stellar case once fre-
quency precision is sufficiently high.

Stellar rotation, as well as any other physical process result-
ing in departure from spherical symmetry, introduces a depen-
dence of the frequencies of non-radial modes on m. When the
cyclic rotational frequency of the star, νrot, is small and in the
case of rigid-body rotation dominated by advection, the cyclic
frequency of a non-radial mode is given to first order by (Ledoux
1951):

νnlm = νnl0 + m νrot , |m| ≤ l . (4)

To a second order of approximation, centrifugal effects that dis-
rupt the equilibrium structure of the star are taken into account
through an additional frequency perturbation (independent of the
sign of m). This perturbation in turn scales as the ratio of the
centrifugal to the gravitational forces at the stellar surface, i.e.,
Ω2R3/(GM), whereΩ denotes the surface angular velocity, R the
radius of the star, M its mass, and G the universal gravitational
constant. Although negligible in the Sun, these effects may be
significant for faster-rotating solar-type stars (e.g., Ballot 2010).
Large-scale magnetic fields may also introduce further correc-
tions to the oscillation frequencies.

The frequency dependence of the mode surface amplitudes is
determined both by (i) the frequency dependence of the stochas-
tic process of excitation (mode energies result from a balance
between the frequency-dependent energy input and the damp-
ing rate) and by (ii) the mode properties in the region of vigor-
ous convection (e.g., Houdek et al. 1999; Samadi et al. 2007).
The stochastic process of excitation is characterized by a rel-
atively slow variation with frequency, meaning that it excites
modes over a large frequency interval to comparable surface am-
plitudes. At low frequencies modes are evanescent in the region
of efficient excitation, leading to small surface amplitudes. At
high frequencies – greater than or equal to the acoustic cut-off
frequency – modes undergo considerable energy loss through
running waves in the atmosphere. Excitation is most efficient

for those modes whose periods match the timescale of the near-
surface convection. Also, the frequency of maximum amplitude,
νmax, is supposed to scale with the acoustic cut-off frequency,
νac (Brown et al. 1991; Kjeldsen & Bedding 1995). All this
gives rise to a characteristic distribution of power with frequency
which is a signature of the presence of solar-like oscillations.

Substantial changes in the properties of solar-like oscilla-
tions occur with stellar evolution, particularly following the ex-
haustion of hydrogen in the core. Most noticeable is the occur-
rence of avoided crossings due to coupling between p and g
modes of like degree (Osaki 1975; Aizenman et al. 1977), which
lead to significant departures from the regular frequency spacing
described by Eq. (1) in the case of evolved stars. The frequen-
cies of non-radial modes, in particular those of l = 1 modes,
are shifted by avoided crossings when they couple with g modes
trapped in the deep stellar interior. At the avoided crossings these
modes have a mixed nature, with both p- and g-mode behav-
ior. Provided they are excited to observable amplitudes (their
high mode inertia reduces their surface amplitude), these so-
called mixed modes are of great diagnostic potential because
they probe the stellar core and are very sensitive to stellar age.

3. On extracting estimates of mode frequencies

3.1. Overview of the different fitting strategies

We computed the power density spectrum (PDS) of the time
series based on the implementation of the Lomb-Scargle pe-
riodogram (Lomb 1976; Scargle 1982) presented in Press &
Rybicki (1989). This algorithm carries out reverse interpolation
of the data onto a regular mesh and subsequently employs the
fast Fourier transform. The power spectrum was then calibrated
so that it satisfies Parseval’s theorem, i.e., so that the total power
in the positive-frequency side of the spectrum is equal to the
variance of the time series (single-sided calibration). The effect
of the window function is further taken into account when nor-
malizing the PDS.

A total of eleven individual fitters (A2Z_CR, A2Z_DS,
A2Z_RG, AAU, IAS_OB, IAS_PG, IAS_TA, OCT, ORK, QML
and SYD) extracted estimates of the p-mode frequencies for at
least one of the two stars and subsequently uploaded their results
to the Cat Basket4 data exchange facility. Different fitting strate-
gies have been adopted and sometimes the same fitting strategy
has been applied in an independent manner. All the fitting strate-
gies adopted are, however, based on Fourier methods, the main
idea behind them being either the maximization of the likeli-
hood of a multi-parameter model describing the data or a classic
prewhitening method.

A frequency-domain representation of the data aims at mod-
eling the limit PDS of the time series. Such a model typically in-
cludes a sum of symmetric Lorentzian profiles meant to describe
the individual p modes, together with a flat term and a number of
additional terms describing both instrumental and stellar back-
ground noise (Anderson et al. 1990):

P(ν) =
∑
n,l,m

Hnlm

1 + [2(ν − νnlm)/Γnlm]2
+ B(ν) , (5)

where H is the mode height, Γ is the mode linewidth (related
to the mode lifetime or amplitude e-folding time, τmode, through
πΓ = 1/τmode), and B(ν) represents the background signal. The

4 http://bison.ph.bham.ac.uk/kcatbasket/
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components arising from the decay of active regions, granula-
tion and faculae are commonly represented using a Harvey-like
model (Harvey 1985; Aigrain et al. 2004):

B(ν) =
∑

k

4σ2
kτk

1 + (2πν τk)sk
+W, (6)

where {σk} are the amplitudes, {τk} are the characteristic
timescales, {sk} are the slopes of the individual power laws in
the denominator, and W is a constant representing white noise
(mainly due to photon shot noise). Equations (5) and (6) are rep-
resentative of the models employed and individual fitters were
further allowed to customize their own models. Hence we can-
not talk of a reference model, as was done in Appourchaux et al.
(2008).

Most fitters opted for performing a global fit (e.g.,
Appourchaux et al. 2008) – whereby the whole set of free param-
eters needed to describe the observed spectrum was optimized
simultaneously – while there was still room for pseudo-global
(or local) fitting (e.g., Jiménez-Reyes et al. 2008), an approach
traditionally adopted for Sun-as-a-star data, whereby narrow fre-
quency windows are considered at a time.

Statistical inference from the data was either frequentist or
Bayesian in nature. The former approach relies on the straight-
forward application of a maximum likelihood estimator (MLE)
taking into account the correct statistics of the spectrum (e.g.,
Toutain & Appourchaux 1994; Appourchaux et al. 2008) or,
in the special case of Gaussian statistics, a least squares esti-
mator (LSE). To be specific: A2Z_CR applied a global LSE
to a smoothed version of the spectrum; A2Z_DS applied a lo-
cal MLE; IAS_TA, OCT and QML applied a global MLE. The
latter approach makes it possible to incorporate relevant prior
information through Bayes’ theorem. A regularized version of
a MLE, known as maximum a posteriori (MAP; e.g., Gaulme
et al. 2009), is a Bayesian point estimation method and was ap-
plied (globally) by A2Z_RG and IAS_PG. AAU and IAS_OB
also performed global fits but instead used Markov chain Monte
Carlo (MCMC) techniques to map the posterior probability dis-
tributions of the frequency parameters (e.g., Benomar et al.
2009a; Gruberbauer et al. 2009; Handberg & Campante 2011).
With the exception of AAU and IAS_OB, who estimated the fre-
quency uncertainties based on the posterior distributions of these
same parameters, all the remaining fitters provided formal error
bars derived from the inverse Hessian matrix.

ORK and SYD adopted a different approach, which did not
involve fitting a model to the power density spectrum. ORK ap-
plied a procedure known as iterative sine-wave fitting (ISWF;
e.g., Bedding et al. 2007; Bonanno et al. 2008; White et al.
2010): it iteratively removes sinusoidal components from the
data, which are identified as the maxima of the Fourier spectrum
of the residuals. Since the number of oscillation modes present
in the data is unknown a priori, the algorithm requires a stop-
ping rule that associates some degree of confidence to the ampli-
tude of each extracted sinusoidal component. For the analysis by
SYD, the power spectrum was smoothed by convolving with a
Gaussian with full width at half maximum of 1.4 μHz (compara-
ble to the intrinsic linewidth of the modes) and the frequencies of
the highest peaks were measured. Mode identification (assigning
l values) was done using the échelle diagram (Grec et al. 1983)
both by ORK and SYD. Finally, frequency uncertainties are esti-
mated either analytically (ORK) or by performing Monte Carlo
simulations with artificial data (SYD).

3.2. Procedure for selecting frequency lists

A procedure for selecting relevant frequency lists to be used in
stellar modeling has been described in Metcalfe et al. (2010).
However, we have opted for revising that procedure. This has
been motivated, at first, by the fact that different fitting strate-
gies provided frequency uncertainties that differed greatly. For
instance, uncertainties that had been underestimated would un-
desirably upweight the respective individual frequency sets.
Consequently, a more robust method of frequency selection was
needed. Other refinements were also made and we give below a
detailed description of the new, revised procedure.

We aim at selecting, for a given star and for a given mode
degree identification, two frequency sets – a minimal frequency
set and a maximal frequency set – that will provide initial con-
straints for the modeling and allow for refined model-fitting, re-
spectively. As before, we would like to determine individual sets,
as opposed to averaged sets, meaning that these sets are fully
reproducible.

We start by constructing both a minimal list and a maximal
list of modes. Take N as being the total number of individual
fitters providing peak-bagging results for a given star and as-
sume for now that N > 2. For each {n, l} pair, we apply Peirce’s
criterion (see Appendix A for its implementation; Peirce 1852;
Gould 1855) for the rejection of outliers and assess how many
frequency estimates are retained. Inclusion or not of the mode in
the minimal list then results from a vote including all (N) fitters:
If the number of frequencies retained is greater than5 �N/2� then
the mode is added to the minimal list. Inclusion or not of the
mode in the maximal list is decided as follows: If the number of
frequencies retained is at least 2 then the mode is added to the
maximal list. The minimal list is thus a subset of the maximal
list. For N = 2 the minimal and maximal lists are degenerate and
will coincide.

In the final stage of the procedure, we compute for each
of the N individual frequency sets the normalized root-mean-
square deviation (nrmsd) with respect to the frequencies aver-
aged over all contributing fitters, {ν̄nl}, belonging to the minimal
list of modes:

nrmsd =

√√√∑
n,l

(νnl − ν̄nl)2/σ2
nl

N1
, (7)

where σnl is the uncertainty in νnl, and N1 is the number of
modes in a particular individual set that actually belong to the
minimal list. The best fit is defined as being the individual set
with the smallest normalized rms deviation. Note that by best
fit we mean here the most representative fit among the N avail-
able sets and not necessarily the one closest to the truth. The
minimal and maximal frequency sets are finally given by those
modes provided by the best fit that belong to the minimal and
maximal lists, respectively. The homogeneous character of the
revised procedure is reassured by generating the minimal and
maximal frequency sets from the same individual set. The cor-
responding frequency uncertainties are simply those associated
with the best fit. When N = 2 a single frequency set is defined,
the same happening for N = 1 in which case it coincides with
the only available individual set.

Although having been revised, this procedure is still subject
to future improvement. The main reason for this is the fact that
we assume the l values to be correctly assigned to modes by all
the fitters. A way of overcoming this would be to implement a

5 �x� returns the closest integer less than or equal to x.
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Fig. 1. Raw-flux time series corrected only for outliers (top panel)
and corrected relative time series (bottom panel) for the case of
KIC 10273246. Vertical dashed lines mark the beginning of each
Quarter, whereas vertical dotted lines separate the segments within a
Quarter.

clustering algorithm that groups frequencies and posteriorly tags
them with a mode degree based on a vote. Another issue con-
cerns the possibility that the best fit misses some modes from
the minimal and maximal lists. A solution for this would be to
ask the fitter providing the best fit to reanalyse the power spec-
trum. One last drawback of this procedure is the possibility that
the minimal and maximal frequency sets may contain some out-
liers, i.e., frequency estimates that have been ruled out according
to Peirce’s criterion.

4. Data analysis

4.1. Time series preparation

The stars were observed from 2009 May 2 to 2010 March 19,
i.e., from Quarter 0 (Q0) to Quarter 4 (Q4). The duty cycle over
the course of the approximately 10 months of observations was
above 90%. Available time series suffered from several instru-
mental perturbations, and we have thus decided to develop our
own corrections (García et al. 2011), independently from the pre-
search data conditioning module of the Kepler science pipeline
(Jenkins et al. 2010), which generates corrected light curves for
transiting-planet search.

The raw-flux time series were corrected for three types of ef-
fects: outliers, jumps and drifts. Data points considered to be out-
liers exhibit point-to-point deviations greater than 3σdiff , where
σdiff is the standard deviation of the first differences of the time
series. This correction removed approximately 1% of the data
points. Jumps are sudden changes in the mean value of the time
series caused by, e.g., attitude adjustments or a drop in pixel sen-
sitivity (see Fig. 1). They were identified as causing spurious
differences in the mean power of contiguous bins spanning one
day. In cases where we know the photometric apertures to have
changed, we by default check for jumps (only implemented in
segments Q2.1 and Q4.1). Each jump has been manually vali-
dated. Finally, drifts are small, low-frequency perturbations due
to temperature changes (e.g., after a long safe-mode event) and
lasting for a few days (see Fig. 2). The corrections are based on
the software developed to deal with high-voltage perturbations in
the GOLF/SoHO instrument (García et al. 2005). We fit a 2nd-
or 3rd-order polynomial function to the section of the time series
where a thermal drift has been observed after comparing several

Fig. 2. Raw-flux time series (corrected only for outliers) of Quarter 2
for the case of KIC 10273246. Vertical dotted lines separate the three
segments of Q2. The induced thermal drift after a safe-mode event is
visible between the 60th and 70th days.

light curves of the same Quarter. The fitted polynomial is then
subtracted and another polynomial function of 1st- or 2nd-order
– used as a reference – is added, which has been computed based
on the observations done before and after the affected section. If
the correction has to be applied to a border of the time series,
then only one side of the light curve is processed.

Once the aforementioned corrections have been applied, we
merge the data of the different Quarters into a single time se-
ries, after equalizing the average counting-rate level between the
Quarters (or sometimes even within a Quarter when some instru-
mental parameters have been changed). In order to do so, and to
allow conversion into units of ppm, we use a series of 6th-order
polynomial fits, one for each segment. Finally, we normalize the
standard deviation of the data obtained during Q3 to the aver-
age of the other Quarters, since Q3 is considerably noisier for
the two stars. This normalization proved to be a good compro-
mise between using the noisy Q3 data and not using them at all.
Given the insufficient technical information available, it is not
possible to know whether or not there is a variation in the gain
of the CCD module during Q3. If such a gain variation is indeed
present, the mode amplitudes would be affected and the adopted
normalization will then correct these amplitudes toward some-
thing closer to their real value. If, on the other hand, no gain
variation is present, then the adopted correction will effectively
reduce the mode amplitudes. Having reduced the standard de-
viation of the data in Q3 by 34% for KIC 10273246 and 49%
for KIC 10920273, and given that Q3 represents 3/7 of the total
length of the time series used for peak-bagging (i.e., from Q0 to
Q3; see Sect. 4.5), then mode amplitudes would be reduced by
about 14% and 21%, respectively. However, we believe this lat-
ter scenario to be less likely and hence the quoted values of 14%
and 21% can only be regarded as upper limits to mode amplitude
reduction, which in reality may be much smaller.

4.2. Rotational modulation

To investigate the stellar rotational period (Prot) of these stars
we seek high-SNR peaks in the low-frequency end of the PDS.
However, the procedure for merging the different data sets de-
scribed in the previous paragraph filters out the power density
below 1 μHz. Therefore, starting with the corrected data, we
have generated new merged time series in which a triangular
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Fig. 3. Low-frequency end – between 0.1 and 3 μHz – of the power
density spectrum of KIC 10273246.

Fig. 4. Similar to Fig. 3 but for the case of KIC 10920273.

smoothing – over a period selected from the range of 12–
20 days – has been used to normalize the light curves instead of
the 6th-order polynomial fit (for details, see García et al. 2011).
Finally, we computed the PDS of the full-length time series and
also of two subsets of 160 days each. The low-frequency ends
of the PDS are shown in Figs. 3 and 4 for KIC 10273246 and
KIC 10920273, respectively. A different pattern of peaks appears
for each star. In the case of KIC 10273246 (Fig. 3), the high-
est peak is seen at about 0.50 μHz (Prot ≈ 23 days) in the three
spectra considered, without any signature of differential rotation.
This turns out to be a reliable signature of rotational modulation,
since comparison with the power spectra of other stars observed
with the same CCD module ruled out the possibility of an in-
strumental artifact. On the other hand, KIC 10920273 (Fig. 4)
exhibits a high peak at about 0.43μHz, though mostly during the
second subset of 160 days. Indeed, this peak is not very signifi-
cant, and during the first subset it is at the same level as that of
the adjacent peaks. The PDS of the full-length time series also
reveals itself as being rather noisy, and it is difficult to disen-
tangle the stellar rotational period from it. Therefore, while a
cyclic rotational frequency of 0.43 μHz (Prot ≈ 27 days) seems
plausible, we cannot exclude the possibility that this peak is as-
sociated with the roll schedule of the telescope. One of several
alternative explanations for the low-SNR peaks would be that this
star was observed during a low magnetic-activity period, with a
small number of spots on its surface. A deeper study based on

Table 2. Background model parameters describing non-resonant fea-
tures.

Star σgran τgran sgran
a W

(ppm) (s) (ppm2 μHz−1)

KIC 10273246 69.9 ± 0.8 390 ± 12 3 4.15 ± 0.02
KIC 10920273 80.1 ± 0.4 351 ± 4 3 11.58 ± 0.02

Notes. (a) The slope of both Harvey-like terms has been fixed.

a longer data set is necessary to confirm the rotational rate of
KIC 10920273.

4.3. Power spectral density of the background

The power density spectra – based on the first seven months
of observations, i.e., from Q0 to Q3 – of KIC 10273246 and
KIC 10920273 are displayed in Fig. 5. The background signal
rises toward the low-frequency end of the spectra with contribu-
tions from granulation and activity. At the high-frequency end,
the spectra are dominated by photon shot noise. Also visible at
the high-frequency end are a number of peaks corresponding
to harmonics of the inverse of the long-cadence period, an ar-
tifact appearing in power spectra of short-cadence time series
(Gilliland et al. 2010b) but having negligible influence on the
current study. In between these two frequency regimes there is
a conspicuous cluster of power due to the presence of p modes,
with the hotter and brighter target KIC 10273246 displaying the
higher SNR.

We fitted a model similar to the one described in Eq. (6)
to a heavily smoothed version of both spectra. This model in-
cluded an additional Gaussian function aimed at describing the
p-mode power-excess hump (e.g., Kallinger et al. 2010b). The
fitting window was from 100 μHz up to the Nyquist frequency,
hence we did not consider a term accounting for the decay of ac-
tive regions, whose typical timescale is considerably longer. We
found no evidence for a facular component based on a simple
visual inspection of the spectra, thus having not included such
a component in the background model. Faculae had previously
been reported on a couple of Kepler solar-type targets by Chaplin
et al. (2010). A component carrying the signature of stellar gran-
ulation is, however, clearly displayed by both stars. Figure 5 dis-
plays the fitted models, while values of the fitted parameters are
given in Table 2. Note that the slope of both granulation compo-
nents has been fixed at the same value, i.e., sgran = 3, which is
closer to solar (e.g., Michel et al. 2009) than the value of 2 orig-
inally proposed by Harvey (1985). Although we lack a physical
reason for fixing this slope, the intention is to facilitate the com-
parison between the values of τgran.

The high-frequency noise power spectral density (W) is ap-
proximately 14% and 16% higher than predictions in the cases of
KIC 10273246 and KIC 10920273, respectively. These predic-
tions have been computed according to the empirical minimal
term model for the noise presented in Gilliland et al. (2010b),
which takes into account the Kepler-band magnitude of the star
and the performance of the instrument. Noise levels are thus
close to being Poisson-limited. A likely source of this extra noise
is the larger scatter in Q3.

4.4. The global asteroseismic parameters Δν, νmax and δνn0

In the past few years, a number of automated pipelines have
been developed to measure global asteroseismic parameters of
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Fig. 5. Power density spectra – smoothed over 1 μHz in order to enhance p-mode visibility – of KIC 10273246 (top panel) and KIC 10920273
(bottom panel), plotted on a log-log scale. The solid black lines represent the fits described in the text. The remaining lines represent different
components of the fitting model: the power envelope due to oscillations added to the offset from white noise (dashed), and granulation (dotted).

Table 3. Estimates of the global asteroseismic parameters Δν, νmax and
δνn0.

Star 〈Δν〉 Range νmax 〈δνn0〉
(μHz) (μHz) (μHz) (μHz)

KIC 10273246 48.2 ± 0.5 [537, 1140] 839 ± 51 5.6 ± 1.2
KIC 10920273 57.3 ± 0.8 [757, 1290] 1024 ± 64 6.0 ± 1.5

solar-like oscillators (Huber et al. 2009; Mosser & Appourchaux
2009; Roxburgh 2009; Campante et al. 2010; Hekker et al. 2010;
Karoff et al. 2010; Mathur et al. 2010b). Most of them have al-
ready been successfully tested on CoRoT data (e.g., Mathur et al.
2010a). The automated nature of these pipelines is required if
we are to efficiently exploit the plenitude of data made available
by Kepler on these targets. A thorough comparison of comple-
mentary analysis methods used to extract global asteroseismic
parameters of main-sequence and subgiant solar-like oscillators
is presented in Verner et al. (2011).

The results of the different pipelines on global parameter
extraction have also been uploaded to the Cat Basket. For a
given global parameter, some groups submitted results using
more than one method or on more than one data release. In
Table 3 we give a representative set of estimates of Δν and νmax
for the two stars in our study. These estimates were supplied
by one of the pipelines, namely, the one described in Mosser
& Appourchaux (2009), and are based on the analysis of the
full-length time series. The large separation is a function of fre-
quency. Consequently, the extent of variation of its mean value

will depend upon the variation in frequency range adopted for
its computation. However, as long as this frequency range in-
cludes νmax, the impact of small differences in the range can be
neglected. For the sake of completeness, we give the adopted
frequency ranges in Table 3. An observed relation between Δν
and νmax for solar-like oscillations in main-sequence stars is pre-
sented in Stello et al. (2009a):

Δν ∝ ν0.77
max. (8)

The values quoted in Table 3 for these two global parameters
satisfy this relation, as can be seen in Fig. 6. Also, τgran is seen
to scale inversely with νmax, as predicted by Kjeldsen & Bedding
(2011).

The same pipeline has provided estimates of δνn0 based on
the analysis of seven months of data. These are also given in
Table 3.

4.5. Mode frequencies

Estimates of mode frequencies were obtained by several individ-
ual fitters for both stars, based on the first seven months of obser-
vations (from Q0 to Q3). The procedure described in Sect. 3.2
was then used to select minimal and maximal frequency sets.
An ad hoc step was, however, implemented at this stage, that
aimed at removing doubtful modes from these sets based on SNR
considerations. This quality control led to the removal of a few
modes at the low- and high-frequency ends of the sets.

Another issue relates to the presence of mixed modes in the
power spectrum. As we will see below, the best fit relies, for both
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Table 4. Summary of the best fits.

Star Method Height (H) Linewidth (Γ) Splitting (νrot) Inclinationa (i)

KIC 10273246 Global One free parameter (Hl=0) per order One free parameter per order Free Free
MAP No prior No prior No prior No prior

Hl=1/Hl=0 = 1.5 (fixed)
Hl=2/Hl=0 = 0.5 (fixed)

KIC 10920273 Global One free parameter (Hl=0) per order One free parameter per order Fixed at 0 μHz Fixed at 0◦
MAP No prior Gaussian prior

Hl=1/Hl=0 = 1.5 (fixed)
Hl=2/Hl=0 = 0.5 (fixed)

Notes. (a) Introduced in Eq. (15).

Fig. 6. Observed relation between Δν and νmax. Here we reproduce
Fig. 2 of Stello et al. (2009a) in linear scale, where only stars whose
νmax is greater than the Nyquist frequency for long-cadence sampling
are displayed. The solid line is the power-law fit in their Eq. (1) with
the corresponding ±15% deviations shown as dotted lines. We added to
the plot the two stars being considered in this study (five-pointed stars),
the two stars (squares) of Mathur et al. (2011), and the three bright
G-type stars (triangles) of Chaplin et al. (2010).

stars, on an algorithm based on a frequency-domain representa-
tion of the data (cf. Eq. (5)). Moreover, the deterministic models
that have been used only contained modes of degree up to l = 2,
with three modes per radial order, one of each degree. The pres-
ence of an extra mixed mode in the vicinity of a mode with low
SNR therefore greatly complicates the fit due to the inadequacy
of the model. As a result, we opted for prewhitening the longer-
lived mixed modes and give their frequencies a posteriori, while
discarding any neighboring power structure with low SNR fitted
by the MLE-based algorithm.

Eleven individual fitters (A2Z_CR, A2Z_DS, A2Z_RG,
AAU, IAS_OB, IAS_PG, IAS_TA, OCT, ORK, QML and SYD)
have provided results for KIC 10273246. A summary of the
anonymous best fit is given in Table 4. The fitter has also im-
posed priors on the parameters used to describe the background
signal, which were based on the output of a previous fit to the
background alone. Table 5 and Fig. 7 combine the minimal and
maximal frequency sets (recall that the former is a subset of
the latter). We have identified a total of 30 modes of degree
l = 0, 1, 2 that span a frequency range of width ≈10Δν. The
mode at 1122.70 μHz has only been reported by two fitters, who
have identified it as being a radial mode despite its alignment
with the l = 2 ridge. Given its very low power and the known

Table 5. The minimal and maximal frequency sets of observed oscilla-
tion frequencies for KIC 10273246.

l Frequency Uncertainty
(μHz) (μHz)

0 737.90 0.30
0 785.40 0.20
0 833.90 0.20
0 883.50 0.20
0 932.70 0.50
0 981.10 0.30
0 1030.70 0.40
0 1079.30 0.20

1 622.80 0.20
1 661.90 0.50
1 695.75b 0.27
1 724.70 0.20
1 764.30 0.30
1 809.80 0.20
1 857.30 0.20
1 905.60 0.30
1 950.00 0.30
1 1008.60 0.40
1 1056.30 0.20
1 1103.30 0.40

2 688.50 0.70
2 734.80 0.60
2 779.50 0.40
2 830.30 0.40
2 880.60 0.50
2 927.50 0.40
2 977.60 0.40
2 1025.30 1.30
2 1073.70 0.20
2 1122.70a,c 0.40

Notes. (a) Mode belonging exclusively to the maximal frequency set.
(b) l = 1 mixed mode introduced a posteriori. (c) Tagging changed a
posteriori from l = 0 to l = 2.

convergence issues experienced by MLE-based methods under
such low SNR conditions, we have decided to change its tagging
a posteriori from l = 0 to l = 2. This mode should thus be con-
sidered with caution.

The problem of ridge identification (i.e., the tagging of
modes by degree l) in F stars dates back to when CoRoT obser-
vations of HD 49933 were first analysed by Appourchaux et al.
(2008). In the present case such an identification can be sim-
ply done by visual inspection of the échelle diagram in Fig. 7.
Nonetheless, two of the fitters (IAS_OB and IAS_TA) provided
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Fig. 7. Échelle diagram of the power density spectrum of KIC 10273246
(the colorbar decodes the power density level). The minimal (filled sym-
bols) and maximal (filled and open symbols) frequency sets are dis-
played. Symbol shapes indicate mode degree: l = 0 (circles), l = 1
(triangles) and l = 2 (squares).

Fig. 8. Similar to Fig. 7 but for the case of KIC 10920273.

results for the two complementary identification scenarios. From
the results provided by IAS_TA we are able to compute the
likelihood ratio (e.g., Appourchaux et al. 1998) in favor of our
preferred scenario, whereas computation of its Bayesian coun-
terpart, the more conservative Bayes’ factor (e.g., Liddle 2009;
Handberg & Campante 2011), is possible based on the results
provided by IAS_OB. Both approaches returned conclusive val-
ues in support of the adopted scenario.

Ten individual fitters (A2Z_CR, A2Z_DS, A2Z_RG,
IAS_OB, IAS_PG, IAS_TA, OCT, ORK, QML and SYD) have
provided results for KIC 10920273. A summary of the anony-
mous best fit is given in Table 4. In addition to the informa-
tion provided in that table, it should also be mentioned that a
Gaussian prior has been imposed on δνn0. Table 6 and Fig. 8
combine the minimal and maximal frequency sets. We have
identified a total of 21 modes – considerably less than for
KIC 10273246 – of degree l = 0, 1, 2 that span a frequency range
of width ≈8Δν. The l = 1 mode at 1135.36 μHz is very close to
the second harmonic (2×566.391μHz) of the long-cadence sam-
pling. Although this anomaly is known to be more prominent for
intermediate harmonics, we nonetheless follow the recommen-
dation of Gilliland et al. (2010b) to flag this mode as suspect.

Table 6. The minimal and maximal frequency sets of observed oscilla-
tion frequencies for KIC 10920273.

l Frequency Uncertainty
(μHz) (μHz)

0 826.66a 0.25
0 882.77 0.20
0 939.58 0.16
0 997.14 0.18
0 1054.33 0.30
0 1111.51 0.25
0 1170.77a 0.33
0 1226.34a 0.33

1 794.65b 0.32
1 838.61b 0.25
1 914.52 0.16
1 968.19 0.13
1 1023.58 0.14
1 1079.10 0.31
1 1135.36d 0.31

2 822.39a 0.28
2 873.10a,c 0.32
2 934.49 0.22
2 992.44 0.13
2 1049.36 0.39
2 1106.76 0.34

Notes. (a) Mode belonging exclusively to the maximal frequency set.
(b) l = 1 mixed mode introduced a posteriori. (c) Possible l = 2 mixed
mode introduced a posteriori. (d) Mode very close to the second har-
monic of the inverse of the long-cadence period.

The quasi-regularity of the small (δνn0) and large frequency
separations (Δνn0 and Δνn2) is evident from Figs. 7 and 8. Notice
that if these stars were to strictly obey the asymptotic rela-
tion in Eq. (1), they would then exhibit vertical ridges in the
échelle diagram provided use of the correct Δν. The small sepa-
ration δνn0 is, however, more clearly distinguished in the case of
KIC 10920273, which might be an indication of smaller mode
linewidths in this cooler star (see Sect. 4.6 for a discussion on
mode linewidths).

A striking feature in both échelle diagrams is the jagged
appearance of the l = 1 ridge, a trademark of the presence
of avoided crossings and an indicator of the evolved nature of
these stars. These same features have also been seen in the cases
of ground-based observations of η Boo (Kjeldsen et al. 2003),
β Hyi (Bedding et al. 2007) and possibly Procyon (Bedding
et al. 2010b), as well as in the cases of the CoRoT target
HD 49385 (Deheuvels et al. 2010a), and KASC survey tar-
gets KIC 11026764 (Metcalfe et al. 2010), KIC 11395018 and
KIC 11234888 (Mathur et al. 2011). Figure 9 displays a so-
called p-g diagram as introduced by Bedding (2011), where the
frequencies of the avoided crossings (i.e., the frequencies of the
pure g modes in the core cavity) for a number of stars are plotted
against the large separation of the p modes. Much of the diag-
nostic potential of mixed modes can be captured in this way,
since their overall pattern is determined by the mode bumping
at each avoided crossing, which in turn is determined by the g
modes trapped in the core. This diagram could prove to be an
instructive way to display results of many stars and to allow for
a first comparison with theoretical models. We also report here
the possible presence of a l = 2 mixed mode in the power spec-
trum of KIC 10920273 (at 873.10 μHz) that should, however, be
confirmed by stellar models.
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Table 7. Linewidths, heights, and bolometric amplitudes of radial modes for KIC 10273246 returned by the best fit (these are not provided for the
radial mode of highest frequency since convergence was not properly achieved).

Frequency Linewidth Uncertainty Height Uncertainty Amplitude Uncertainty
(μHz) (μHz) (μHz) (ppm2 μHz−1) (ppm2 μHz−1) (ppm) (ppm)

737.90 1.6 +0.5/−0.4 10.4 +3.3/−2.5 5.48 ±0.81
785.40 1.7 +0.4/−0.3 11.4 +3.0/−2.4 5.90 ±0.80
833.90 1.5 +0.3/−0.3 19.2 +4.7/−3.8 7.17 ±0.75
883.50 1.8 +0.4/−0.3 15.9 +3.6/−2.9 7.14 ±0.75
932.70 2.3 +0.5/−0.4 10.6 +2.4/−2.0 6.60 ±0.77
981.10 1.9 +0.5/−0.4 12.9 +3.3/−2.6 6.61 ±0.73
1030.70 2.6 +0.8/−0.6 5.5 +1.5/−1.2 5.09 ±0.83
1079.30 · · · · · · · · · · · · · · · · · ·

Fig. 9. p-g diagram showing the frequencies of avoided crossings (dia-
monds) plotted against the large separation for a number of stars. The
vertical lines show the range over which the l = 1 ridge is clearly seen.
The inclined line is the observed relation between Δν and νmax of Stello
et al. (2009a). For KIC 10273246 there are two clear avoided crossings,
whereas for KIC 10920273 there is only one clear crossing plus another
likely one (open symbol).

Detection of l = 3 modes with photometric observations
is made very difficult due to geometric cancellation effects.
Solar-like oscillations with l = 3 from Kepler photometry have
nonetheless been reported for a set of low-luminosity red gi-
ants by Bedding et al. (2010a). Deheuvels et al. (2010a) have
also reported the presence of l = 3 modes for the CoRoT tar-
get HD 49385. We should bear in mind that, except for ORK
and SYD, all the remaining fitters used deterministic models in
their frequency-domain representations of the data that only con-
tained modes of degree up to l = 2, meaning that a statistical
assessment of the presence or not of l = 3 modes could not be
done. ORK and SYD, which were the only fitters that did not
make any prior assumptions about the degree of the modes, have
not reported the detection of modes that could be interpreted as
l = 3 modes.

4.6. A word on mode linewidths, heights, and amplitudes

A thorough discussion of the mode linewidths, heights, and am-
plitudes goes beyond the scope of this work. However, there are
some aspects we would like to mention here.

The intrinsic frequency resolution of the spectra (≈0.05μHz)
makes it possible to resolve the modes. This condition is obeyed

Fig. 10. Linewidths of the radial modes returned for KIC 10273246 and
KIC 10920273 by the respective best fit. Modes represented by open
symbols belong exclusively to the maximal frequency set. Dot-dashed
lines mark the predicted mean linewidths of the most prominent modes
using Eq. (9). The horizontal dimension of the line-filled areas repre-
sents the uncertainty in νmax.

provided the observation length T  2τmode (Chaplin et al.
2003). Figure 10 displays, for each star, the linewidths of the
radial modes returned by the respective best fit (see also Tables 7
and 8). The radial modes considered are those belonging to
the maximal frequency set. Notice the near-constancy with fre-
quency of the mode linewidths in the case of KIC 10920273,
whereas for KIC 10273246 the linewidths increase steadily, al-
though with considerably larger error bars (note that both sets
of error bars were derived from the inverse Hessian matrix).
Using pulsation computations of a grid of stellar models and the
first asteroseismic results on mode lifetimes of solar-like stars,
Chaplin et al. (2009) suggested a simple scaling relation be-
tween the mean mode linewidth of the most prominent p modes
and Teff:

〈Γ〉 ∝ T 4
eff . (9)

Figure 10 also displays the resulting predictions of mean
linewidths of the most prominent modes (we have considered
〈Γ〉� ≈ 1.2 μHz and Teff � = 5777 K, and taken the recalibrated
KIC temperatures). The agreement with the observed values is
fairly good in the case of KIC 10273246. On the other hand, the
predicted value obtained for KIC 10920273 using Eq. (9) overes-
timates the observed linewidths. Assuming validity of this equa-
tion, this might be the result of the combination of two factors,
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Table 8. Linewidths, heights, and bolometric amplitudes of radial modes for KIC 10920273 returned by the best fit.

Frequency Linewidth Uncertainty Height Uncertainty Amplitude Uncertainty
(μHz) (μHz) (μHz) (ppm2 μHz−1) (ppm2 μHz−1) (ppm) (ppm)

826.66 0.88 +0.18/−0.15 9.10 +4.27/−2.91 3.75 ±1.32
882.77 0.89 +0.16/−0.14 18.56 +5.30/−4.12 5.18 ±1.08
939.58 0.78 +0.13/−0.11 26.28 +6.91/−5.47 5.74 ±1.02
997.14 0.86 +0.14/−0.12 42.21 +9.71/−7.90 7.56 ±0.99
1054.33 1.05 +0.20/−0.16 15.43 +4.57/−3.53 5.13 ±1.11
1111.51 0.97 +0.20/−0.16 12.83 +4.36/−3.25 4.54 ±1.16
1170.77 0.91 +0.20/−0.17 3.77 +3.26/−1.75 2.97 ±1.88
1226.34 0.92 +0.20/−0.17 5.99 +3.34/−2.14 3.26 ±1.46

Fig. 11. Heights of the radial modes returned for KIC 10273246 and
KIC 10920273 by the respective best fit, plotted on a log-linear scale.
Modes represented by open symbols belong exclusively to the maximal
frequency set. Also indicated is the SNR of the strongest modes as well
as the background fits of Fig. 5 (dotted lines).

namely, an overestimation of Teff and an overestimation of the
fitted background that leads to underestimated fitted linewidths.
Nonetheless, the F-type star KIC 10273246 exhibits the larger
mode linewidths, as expected from Eq. (9). We should also note
that Baudin et al. (2011) found a much stronger dependence of
the mean mode linewidth on Teff.

When a mode is resolved, as is the case here, it is the mode
height, H, that determines the SNR in power, viz., the height-to-
background ratio. Figure 11 displays, for each star, the heights
of the radial modes returned by the respective best fit (see also
Tables 7 and 8). The modes are the same as shown in Fig. 10. We
also indicate in Fig. 11 the SNR of the strongest radial modes, as
well as the background fits of Fig. 5 (which are an indicator of
SNR = 1). Overall, KIC 10273246 exhibits a higher SNR if we
take into account the whole plotted frequency bands. Also ap-
parent is the larger width of the p-mode hump of KIC 10920273,
which roughly scales with νmax (e.g., Stello et al. 2007; Mosser
et al. 2010).

Furthermore, we computed the rms amplitudes of the radial
modes, An0, according to (e.g., Chaplin et al. 2003):

An0 =

√
π

2
Γn0Hn0. (10)

Amplitudes are always better constrained than the heights and
the linewidths themselves. We were careful enough to compute
errors on the amplitudes that took into account the correlations

between the fitted parameters Γn0 and Hn0 (e.g., Appourchaux
2011). These amplitudes were then scaled to their bolomet-
ric equivalent using the bolometric correction derived from
the spectral response of the Kepler passband (Ballot et al.
2011). Finally, we obtained a maximum bolometric amplitude
of A(max)

n0,bol = 7.17 ± 0.75 ppm (at 833.90 μHz) for KIC 10273246

(cf. Table 7), and of A(max)
n0,bol = 7.56±0.99ppm (at 997.14μHz) for

KIC 10920273 (cf. Table 8). These values were computed based
on the results returned by the respective best fit and were found
to be consistent with the values obtained from the other fitters’
results.

Kjeldsen & Bedding (1995) have suggested an empirical
scaling relation to predict the amplitudes of solar-like oscil-
lations that, although extensively used, predicts amplitudes in
F-type stars that are higher than actually observed (e.g., Michel
et al. 2008). Recently, the same authors have proposed a new
scaling relation for the amplitudes which is based on simple
physical arguments (Kjeldsen & Bedding 2011):

Abol ∝
L τ0.5

mode

M1.5 T 1.25+r
eff

, (11)

where L is the stellar luminosity, and the value of r is chosen to
be either r = 1.5 (assuming adiabatic oscillations) or r = 2 (fol-
lowing a fit to observational data in Kjeldsen & Bedding 1995).
By assuming that νmax is a fixed fraction of the acoustic cut-off
frequency, i.e.,

νmax ∝ νac ∝
M T 3.5

eff

L
, (12)

and adopting a scaling relation for the stellar mass based on seis-
mic parameters (e.g., Kallinger et al. 2010b),

M ∝ Δν−4 ν3max T 1.5
eff , (13)

we can combine Eqs. (11)–(13) to obtain the following relation
(normalized with respect to values in the Sun):

A(max)
n0,bol = A(max)

n0,bol�

(
Teff

Teff �

)1.5−r (
νmax

νmax�

)−2.5 (
Δν

Δν�

)2 (
Γ

Γ�

)−0.5

,

(14)

where A(max)
n0,bol� = 2.53 ppm, νmax� = 3050 μHz, and Δν� =

135 μHz. Note that by setting r = 1.5 (as we will be assuming
hereafter), the dependence of Eq. (14) on Teff is canceled and
this scaling relation then solely depends on seismic parameters.
Finally, use of this relation gives a predicted maximum bolomet-
ric amplitude of A(max)

n0,bol = 7.27 ± 1.33 ppm for KIC 10273246,
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Fig. 12. Variation of Δνodd and Δνeven with frequency for KIC 10273246.
The dashed line corresponds to the odd ridge, whereas the solid line cor-
responds to the even ridge. Error bars are given with the same linestyles.
Proxies of the mode frequencies derived with the EACF have been su-
perimposed and their values appended: l = 0 (circles) and l = 1 (trian-
gles). The inset shows the comb filter used in the analysis.

and of A(max)
n0,bol = 8.24±1.44ppm for KIC 10920273, with the rela-

tively large uncertainties dominated by the errors on νmax. These
values agree with the observed values at the 1-σ level. This is
a particularly interesting result, since no discrepancy is seen be-
tween the predicted and observed amplitudes for the F-type star
KIC 10273246.

4.7. Variation of Δν with frequency

An independent methodology has been used to estimate the large
frequency separation and the mode frequencies, which is based
on the analysis of the spectrum with the envelope autocorrela-
tion function (EACF; Mosser & Appourchaux 2009). As initially
proposed by Roxburgh & Vorontsov (2006), the autocorrelation
of the time series – or, equivalently, the power spectrum of the
power spectrum – windowed with a narrow filter gives the varia-
tion of the large separation with frequency,Δν(ν). Mosser (2010)
has shown that, with a dedicated comb filter for analysing the
power spectrum, it is possible to obtain independently the val-
ues of the large separation for the odd (l = 1) and even (l = 0, 2)
ridges. We denote them by Δνodd and Δνeven. Proxies of the mode
frequencies can then be integrated from the Δν(ν) frequency pat-
tern. In practice, they are derived from the correlation between
the observed PDS and a synthetic spectrum based on the Δν(ν)
pattern.

The values of Δνodd and Δνeven for KIC 10273246 are given
in Fig. 12. Notice the agreement between the proxies of the fre-
quencies derived with the EACF and the frequencies of the max-
imal frequency set (Table 5). The EACF emphasizes the low val-
ues of Δνodd as well as its large gradient at the low-frequency
end. Also clear is the large discrepancy relative to a regular
échelle spectrum around 1000 μHz. The only mode present in
the maximal frequency set and not detected with the EACF is
the mixed mode at 695.75 μHz. This peak appears as supernu-
merary when compared to the regular agency of the modes. The
EACF makes it possible to derive the large separation one radial
order further than does peak-bagging.

Results for KIC 10920273 are given in Fig. 13. The lower
SNR is counterbalanced by using a broader filter when com-
puting the EACF. Again, the analysis is not conclusive for one
mixed mode at low frequency, but it is able to recover the

Fig. 13. Similar to Fig. 12 but for the case of KIC 10920273.

l = 1 ridge. We note that the even ridge is affected by the prox-
imity of mixed modes. As opposed to the case of KIC 10273246,
the EACF does not provide any further modes.

4.8. Rotational splitting and inclination

Stellar rotation removes the (2l + 1)-fold degeneracy of the fre-
quencies of non-radial modes, allowing for a direct measurement
of the stellar angular velocity averaged over the regions probed
by these modes, as conveyed by Eq. (4). Using the radii and
masses computed from model-grid-based methods by Creevey
et al. (in prep.) together with the estimates of Prot, we have com-
puted the ratio of the surface angular velocity to the Keplerian
break-up velocity, i.e., Ω/

√
GM/R3, which returned a value of

approximately 1% for both stars, indicating that these are most
likely slow rotators. In view of this and given the precision
achievable from the spectra, we have thus decided not to include
any second-order effects on the rotational splitting.

The overall profile of a non-radial multiplet thus consists
of the sum of 2l + 1 Lorentzian profiles regularly spaced in
frequency, and scaled in height according to the Elm(i) factors
(Dziembowski 1977; Dziembowski & Goode 1985; Gizon &
Solanki 2003):

Elm(i) =
(l − |m|)!
(l + |m|)!

[
P|m|l (cos i)

]2
, (15)

where i is the inclination angle between the direction of the stel-
lar rotation axis and the line of sight, and Pm

l (x) are the associ-
ated Legendre functions. Note that

∑
m Elm(i) = 1, meaning that

the Elm(i) factors represent the relative power contained in the
modes within a multiplet.

While we are not able to robustly constrain the rotational
splitting and inclination for both stars, we are however in a posi-
tion to impose loose constraints on these parameters. Figures 14
and 15 map the two-dimensional posterior probability distribu-
tions of these parameters respectively for KIC 10273246 and
KIC 10920273, based on the samples from a MCMC analysis
of the ten-month-long time series by IAS_OB. We have overlaid
each of these correlation maps with curves representing the esti-
mate of Prot given in Sect. 4.2 and the Prot(i) relation of Creevey
et al. (in prep.), obtained by combining the projected rotational
velocity (v sin i) with the stellar radius.

For KIC 10273246, a comparison of the estimate of the ro-
tational period with the Prot(i) relation implies that i � 20◦,
which is also corroborated by the underlying correlation map.
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Fig. 14. Two-dimensional posterior probability distribution of νrot and i
for KIC 10273246 (the colorbar decodes the probability density level).
The prior on i is uniform over the plotted range, whereas the prior on νrot

is uniform over the interval 0–2μHz with a decaying Gaussian wing for
higher values of the splitting. The dot-dashed line marks the estimate of
the stellar rotational period given in Sect. 4.2. Furthermore, the Prot(i)
relation (solid curve) of Creevey et al. (in preparation) is shown together
with the corresponding confidence interval (dotted curves).

Fig. 15. Similar to Fig. 14 but for the case of KIC 10920273. Given the
possibility that v sin i ≈ 0 km s−1, the lower bound of the confidence
interval of Prot(i) will coincide with the horizontal axis.

Moreover, we notice that the marginal posterior probability dis-
tribution of νrot is unimodal and points toward an interior rotat-
ing roughly as fast as the surface. We are however cautious not to
claim to have robustly constrained the rotational splitting, since
changes in the model – as well as in the priors on its parameters
– used to represent the background signal may lead to significant
alterations in the correlation map.

For KIC 10920273, no constraints on i are possible from
a comparison of the estimate of the rotational period with the
Prot(i) relation. We should nevertheless remind the reader that the
estimate of Prot is somewhat doubtful (see Sect. 4.2). Although
not completely apparent from Fig. 15, the marginal posterior
probability distribution of i favors the scenario of a star seen
pole-on (i.e., i ≈ 0◦). Consequently, according to Eq. (15), this
would make inviable an inference of the rotational splitting.
Going back to the discussion in Sect. 4.2, the possibility that this
star is seen pole-on gains strength in explaining the low-SNR
peaks at the low-frequency end of the PDS. There is however an

alternative interpretation of the correlation map shown in Fig. 15
that should not be neglected: the high sensitivity of the parame-
ter i to realization noise may lead to what is known as fit locking
at 0◦ (e.g., Gizon & Solanki 2003; Ballot et al. 2008).

5. Summary and conclusions

The evolved Sun-like stars KIC 10273246 and KIC 10920273,
respectively of spectral types F and G, were observed with
Kepler at short cadence for approximately ten months (from Q0
to Q4) with a duty cycle in excess of 90%. The light curves used
in the present analysis have been corrected for instrumental ef-
fects in a manner independent of the Kepler science pipeline.
Both stars are relatively faint and display low SNR in the p-mode
peaks.

Different fitting strategies have been employed to extract
estimates of p-mode frequencies as well as of other individ-
ual mode parameters, from which we have selected frequency
lists that will help constraining stellar models. A total of 30
and 21 modes of degree l = 0, 1, 2 have been identified for
KIC 10273246 and KIC 10920273, respectively. These span at
least eight radial orders. Furthermore, two avoided crossings
(l = 1 ridge) have been identified for KIC 10273246, whereas
one avoided crossing plus another likely one have been iden-
tified for KIC 10920273. These avoided crossings yield strong
constraints – although model-dependent – on stellar age. Such
results confirm previous expectations that asteroseismology of
solar-type KASC survey targets is possible down to apparent
magnitudes of 11 and fainter, provided we work with a multi-
month time series (e.g., Stello et al. 2009b).

The peak-bagging results presented in Sect. 4.5 are based on
the analysis of data from the first seven months of observations.
A smaller number of individual fitters also analysed the ten-
month-long time series (from Q0 to Q4). In spite of realization
noise being expected to scale as 1/

√
T (Libbrecht 1992; Toutain

& Appourchaux 1994; Stahn & Gizon 2008) thus making it pos-
sible to increase measurement precisions, there was barely any
gain in terms of the number of modes detected. This is actually
not surprising as, once a mode is resolved, the background-to-
signal ratio in the power spectrum cannot be improved with time
(e.g., Chaplin et al. 2003). The only exceptions would be (i) a
radial mode at 690.34 ± 0.23 μHz for KIC 10273246, which is,
however, detected with the EACF and shown in Fig. 12, and (ii) a
l = 2 mode at 818.73 ± 0.23 μHz for KIC 10920273.

Good agreement is found between the observed and pre-
dicted mode amplitudes for the F-type star KIC 10273246, based
on the revised scaling relation of Kjeldsen & Bedding (2011).
This is a particularly interesting result that calls for further tests
of this scaling relation using the large sample of Kepler stars.

Despite blending of the multiplet components of non-radial
modes, i.e., 〈Γ〉 � νrot (e.g., Ballot et al. 2006), we believe to
be possible to impose loose constraints on the rotational split-
ting and stellar inclination for both stars. These constraints are
based on a combined analysis involving correlation maps, Prot(i)
curves and estimates of Prot.

The results presented here point towards KIC 10273246 and
KIC 10920273 being most likely evolved main-sequence stars.
The global asteroseismic parameters reported for these stars, to-
gether with a detailed atmospheric analysis, should allow con-
straining their radius, mass and age with considerable precision
(Creevey et al., in prep.). Further insight into the physics of these
evolved solar-type stars – based on detailed modeling and inver-
sion techniques – is now possible due to the high quality of the
seismic parameters found.
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Appendix A: Implementing Peirce’s criterion

Peirce’s criterion is an exact rule for the rejection of doubtful ob-
servations derived from the fundamental principles of probabil-
ity theory. Quoting Peirce (1852): “The proposed observations
should be rejected when the probability of the system of errors
obtained by retaining them is less than that of the system of er-
rors obtained by their rejection multiplied by the probability of
making so many, and no more, abnormal observations”.

Logic calls for an iterative assessment of the rejection when
one or more observations are rejected. The iteration stops when
no further improvement is possible. Based on the work of Gould
(1855), we have implemented Peirce’s criterion as follows:

1. compute the mean, x̄, and the standard deviation, σ, for the
observational sample {xi};

2. compute the rejection factor r from Gould (1855) assuming
one doubtful observation;

3. reject observations satisfying |xi − x̄| > rσ;
4. if n observations are rejected then compute a new rejection

factor r assuming n+1 doubtful observations;
5. repeat steps 3 to 4 until the number of rejected observations

no longer increases.
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ABSTRACT

Context. Asteroseismology has entered a new era with the advent of the NASA Kepler mission. Long and continuous photometric
observations of unprecedented quality are now available which have stimulated the development of a number of suites of innovative
analysis tools.
Aims. The power spectra of solar-like oscillations are an inexhaustible source of information on stellar structure and evolution. Robust
methods are hence needed in order to infer both individual oscillation mode parameters and parameters describing non-resonant
features, thus making a seismic interpretation possible.
Methods. We present a comprehensive guide to the implementation of a Bayesian peak-bagging tool that employs a Markov chain
Monte Carlo (MCMC). Besides making it possible to incorporate relevant prior information through Bayes’ theorem, this tool also
allows one to obtain the marginal probability density function for each of the fitted parameters. We apply this tool to a couple
of recent asteroseismic data sets, namely, to CoRoT observations of HD 49933 and to ground-based observations made during a
campaign devoted to Procyon.
Results. The developed method performs remarkably well at constraining not only in the traditional case of extracting oscillation
frequencies, but also when pushing the limit where traditional methods have difficulties. Moreover it provides an rigorous way of
comparing competing models, such as the ridge identifications, against the asteroseismic data.

Key words. methods: data analysis – methods: statistical – stars: late-type – stars: oscillations

1. Introduction

Seismology of solar-like stars is a powerful tool that can be used
to increase our understanding of stellar structure and evolution.
Solar-like oscillations in main-sequence stars and subgiants have
been measured thanks to data collected from ground-based high-
precision spectroscopy (for a review e.g., Bedding & Kjeldsen
2008) and, more recently, to photometric space-based missions
such as CoRoT (e.g., Michel et al. 2008). Red giants also ex-
hibit solar-like oscillations, although at lower frequencies, and
hence require longer time series in order to resolve them (e.g.,
De Ridder et al. 2009, and references therein). The launch of the
NASA Kepler mission (Koch et al. 2010) definitely marked a
milestone in the field of asteroseismology. Kepler will particu-
larly lead to a revolution in the seismology of solar-like oscilla-
tors, since it will increase by more than two orders of magnitude
the number of stars for which high-quality observations will be
available, while allowing for long-term follow-ups of a selec-
tion of those targets. The large homogeneous sample of data
made available by Kepler opens the possibility of conducting
a seismic survey of the solar-like part of the colour-magnitude
diagram, which researchers in the field already started naming
as ensemble asteroseismology. As of the time of writing of this
article, first results arising from the Kepler asteroseismic pro-
gramme had already been made available (Bedding et al. 2010a;
Chaplin et al. 2010; Gilliland et al. 2010; Hekker et al. 2010b;
Stello et al. 2010; Christensen-Dalsgaard et al. 2010; Metcalfe
et al. 2010).

The rich informational content of power spectra of solar-like
oscillations allows fundamental stellar properties (e.g. mass, ra-
dius, and age) to be determined, and the internal structure to
be constrained to unprecedented levels provided that individ-
ual oscillation mode parameters are measured (e.g., Christensen-
Dalsgaard 2004). Furthermore, the measured stellar background
signal provides us with valuable information on activity and con-
vection. In the case of the highest signal-to-noise ratio (S/N) ob-
servations, for which it is possible to measure individual oscilla-
tion mode parameters, we expect asteroseismology to produce a
major breakthrough on stellar structure and evolution, on topics
as diverse as energy generation and transport, rotation and stellar
cycles (e.g., Karoff et al. 2009).

For the past few years significant work has been invested in
making preparations for the mode parameter analysis of Kepler
data. This analysis involves the estimation of individual and av-
erage oscillation mode parameters, as well as estimation of pa-
rameters that describe non-resonant signatures of convection and
activity. Examples include the work conducted in the frame-
work of the AsteroFLAG consortium (Chaplin et al. 2008a)
and the work undertaken by the CoRoT data analysis team
(Appourchaux et al. 2006). This consequently paved the way
for the development of suites of analysis tools for application
to Kepler data (Hekker et al. 2010a; Huber et al. 2009; Karoff
et al. 2010; Mathur et al. 2010; Mosser & Appourchaux 2009;
Campante et al. 2010).

In the present study we give continuity to this work by
presenting a comprehensive guide to the implementation of a
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Bayesian peak-bagging1 tool that employs a MCMC. These
techniques derive from the tools traditionally used in helioseis-
mology and are in many ways an extension of the maximum like-
lihood estimation (MLE) methods. This peak-bagging tool is to
be applied to the power spectra of solar-like oscillators and used
as a means to infer both individual oscillation mode parameters
and parameters describing non-resonant features. Besides mak-
ing it possible to incorporate relevant prior information through
Bayes’ theorem, this tool also allows one to obtain the marginal
probability density function (PDF) for each of the model pa-
rameters (frequencies, mode heights, mode lifetimes, rotational
splitting, inclination angle etc.). This is one of the main advan-
tages of these MCMC techniques, as it not only performs well
in low signal-to-noise conditions, but also provides reliable er-
ror bars on the parameters. Parameter space is sampled using
a Metropolis-Hastings algorithm featuring a built-in statistical
control system that allows to automatically set an appropriate in-
strumental law during the burn-in stage. Also included is parallel
tempering, which increases the mixing properties of the Markov
chain.

The outline of the paper is as follows: we start in Sect. 2
by providing an overview of the theory behind the power spec-
trum of solar-like oscillations, introducing the assumptions and
the set of parameters needed to model the spectrum to the level
of detail required by modern asteroseismic data. In Sect. 3 we
describe the subjacent Bayesian statistical framework by high-
lighting the topics of parameter estimation and model selection.
Section 4 is devoted to the modus operandi of advanced Markov
chain Monte Carlo methods and their implementation. In Sect. 5
we present a couple of examples where this tool has been applied
to recent asteroseismic data sets, evidencing some of its capabil-
ities and illustrating its functioning. A summary and discussion
are presented in Sect. 6.

2. The power spectrum of solar-like oscillations

Solar-like oscillations or p modes (pressure playing the role
of the restoring force) are global standing acoustic waves.
They are characterized by being intrinsically damped while si-
multaneously stochastically excited by near-surface convection.
Therefore, all stars cool enough to harbor an outer convective en-
velope – whose locus in a H–R diagram approximately extends
from the cool edge of the Cepheid instability strip up to the red
giant branch – may be expected to exhibit solar-like oscillations.

Modes of oscillation are characterized by three wave num-
bers: n, � and m. The radial order n characterizes the behaviour of
the mode in the radial direction. The degree � and the azimuthal
order m determine the spherical harmonic describing the proper-
ties of the mode as a function of colatitude and longitude. In the
case of stellar observations, the associated whole-disk light in-
tegration and consequent lack of spatial resolution strongly sup-
press the signal from all but the modes of the lowest degree (with
�≤3). For a spherically symmetric star mode frequencies depend
only on n and �.

2.1. Statistics and likelihood function of the spectrum

Stellar p modes can be modelled as stochastically excited and
intrinsically damped harmonic oscillators (Kumar et al. 1988).

1 The term “peak-bagging” has become the customary name for the
examination of individual oscillation peaks in the field of asteroseis-
mology. The origin of the name is explained in Appourchaux (2003b).

The frequency-power spectrum arising from such a system can
in turn be modelled by a mean spectrum profile, P(ν j;Θ), de-
scribed by the set of parameters Θ which contain the desired
physical information, multiplied by a random noise with a χ2

probability distribution with 2 degrees of freedom (Woodard
1984; Duvall & Harvey 1986). This means that, at a fixed fre-
quency bin j, the probability density, f (P j), that the observed
power spectrum takes a particular value P j, is related to the mean
spectrum, P(ν j;Θ), by:

f (P j) =
1

P(ν j;Θ)
exp

[
− P j

P(ν j;Θ)

]
· (1)

Very often when dealing with long time series, it is customary
to divide the observational data set into several independent sub-
sets, to compute their separate spectra and to average them. In
doing so one aims at decreasing the variance in the power spec-
trum. The average power spectrum will then obey a χ2 proba-
bility distribution with 2s degrees of freedom, χ2

2s, s being the
number of combined spectra (Appourchaux 2003a):

f (P j) =
ss−1

(s − 1)!

Ps−1
j

P(ν j;Θ)s
exp

[
− s P j

P(ν j;Θ)

]
· (2)

Equation (2) also holds when binning the power spectrum over
s bins (Appourchaux 2004).

We would now like to specify the likelihood function, i.e.,
the joint PDF for the data sample {P j}. Assuming that the fre-
quency bins are uncorrelated, the joint PDF is simply given by
the product of f (P j;Θ) over some frequency interval of interest
spanned by j:

L(Θ) =
∏

j

f (P j;Θ). (3)

Notice that we have written f (P j;Θ) to make the dependence on
the parametersΘ explicit. In spite of the fact that Eq. (3) is valid
for an uninterrupted data set, the same is not true when gaps are
present in the time series. In that event, Stahn & Gizon (2008)
have derived an expression for the joint PDF of solar-like oscil-
lations in complex Fourier space, in agreement with the earlier
work of Gabriel (1994). The latter PDF explicitly takes into ac-
count frequency correlations introduced by the convolution with
the spectral window.

The basic idea when employing a Maximum Likelihood
Estimator (MLE) is to determine estimates Θ̃ so as to maximize
the likelihood function (e.g., Toutain & Appourchaux 1994).
Due to improved numerical stability, however, it is more con-
venient, in practice, to work with logarithmic probabilities:

L (Θ) ≡ ln L(Θ)

= −
∑

j

{
ln P(ν j;Θ) +

P j

P(ν j;Θ)

}
· (4)

One therefore ends up maximizing the logarithm of the likeli-
hood function instead:

Θ̃ = arg max
Θ
{L (Θ)} . (5)
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2.2. Modelling the power spectrum2

The power spectrum of a single mode of oscillation is distributed
around a mean profile with an exponential probability distribu-
tion according to Eq. (1). As already mentioned, this mean pro-
file contains the information on the physics of the mode. In the
limit of taking the ensemble average of an infinite number of
realisations of the power spectrum, it can be shown (Anderson
et al. 1990) that the limit spectrum thus obtained follows in
fact a standard Lorentzian profile near the resonance, i.e., for
|ν − ν0| � ν0. A Lorentzian profile is defined as:

M (ν; S , ν0, Γ) =
S

1 + 4
Γ2 (ν − ν0)2

, (6)

where S is the mode height and Γ is the mode linewidth. Γ is
related to the mode lifetime, τ, through Γ = (πτ)−1. In the case
of solar-type stars and for low angular degree �, we can assume
that Γ is a function of frequency alone, which is supported both
by observations of the Sun and by theoretical models (e.g. Aerts
et al. 2010; Dupret et al. 2009).

A power spectrum of solar-like oscillations will, of course,
contain a myriad of modes spanning a broad range in frequency,
superimposed on a background signal of both stellar and in-
strumental origin. The overall limit spectrum is then given by
the sum of the separate limit spectra arising from the differ-
ent sources, since interference effects from beating between the
modes average out in the limit. Notice that we are assuming that
a mode is uncorrelated with any other modes or with the back-
ground signal. In doing so, we neglect any eventual asymmetries
of the Lorentzian profiles (Duvall et al. 1993; Abrams & Kumar
1996). Nevertheless, when dealing with long time series, such
asymmetries should be included in order to avoid biases in mode
frequency determination. Furthermore, the presence of gaps and
the finite length of the time series lead to a degradation of the ob-
served power spectrum, which then results from the convolution
of the true spectrum (i.e., the one that would be obtained were
there no gaps) with the power spectrum of the window function
(i.e., the spectral window). However, this problem is overcome
by convolving the final limit spectrum with the spectral window.

Ignoring any departure from spherical symmetry, non-radial
modes differing only on the azimuthal number m are degener-
ate and their profiles will be combined into a single profile, that
of the (n, �) multiplet. Stellar rotation removes the (2� + 1)-fold
degeneracy of the frequency of oscillation of non-radial modes,
thus allowing for a direct measurement of the angular velocity of
the star averaged over the region probed by these modes. When
the angular velocity of the star, Ω, is small and in the case of
rigid-body rotation, the frequency of a (n, �,m) mode is given to
first order by (Ledoux 1951):

νn�m = νn� + m
Ω

2π
(1 −Cn�). (7)

The kinematic splitting, mΩ/(2π), is corrected for the effect of
the Coriolis force through the dimensionless quantity Cn� > 0. In
the asymptotic regime, i.e., for high-order, low-degree p modes,
rotational splitting is dominated by advection and the split-
ting between adjacent modes within a multiplet is νs � Ω/(2π).
Second-order rotational effects are related to the distortion of the

2 To be precise, we will be modelling the power density spectrum
and not the power spectrum. The former is independent of the window
function and is obtained by multiplying the power spectrum by the
effective length of the observational run, which can in turn be calculated
as the reciprocal of the area integrated under the spectral window.
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Fig. 1. Artificial power density spectrum of a � = 0 singlet and a � = 1
multiplet. One has νs = Γ = 3 μHz. Notice how the � = 1 multiplet splits
into its m components. The power spectrum (grey) is distributed around
a mean spectrum (black) with an exponential probability distribution.

equilibrium structure of the star caused by centrifugal forces.
Although negligible in the Sun, these effects are significant
for faster solar-type rotators where these effects can cause
non-negligible biases on frequency determinations (e.g., Ballot
2010). Large-scale magnetic fields may also introduce further
corrections to the oscillation frequencies.

Assuming energy equipartition between the components of a
multiplet, we define the following symmetric profile for a (n, �)
multiplet:

Mn�(ν; S n�, νn�, Γn�, νs, i) =
�∑

m=−�
E�m(i) M (ν; S n�, νn�+mνs, Γn�),

(8)

where E�m(i) represents mode visibility within a multiplet and i is
the inclination angle between the direction of the stellar rotation
axis and the line of sight. The overall profile of a multiplet thus
consists of the sum of 2�+1 Lorentzian profiles regularly spaced
in frequency and scaled in height according to the E�m(i) factors
(see Fig. 1), which in turn are given by (Gizon & Solanki 2003):

E�m(i) =
(� − |m|)!
(� + |m|)!

[
P|m|� (cos i)2

]
, (9)

where Pm
�

(x) are the associated Legendre functions. Notice that∑
m E�m(i) = 1, meaning that E�m(i) represents the relative power

contained in a mode within a multiplet.
Since we are primarily interested in performing a so-called

global fit (e.g., Appourchaux et al. 2008) to the observed power
spectrum, whereby several radial orders are fitted simultane-
ously within a broad frequency range, we end up modelling
the mean acoustic spectrum according to the following general
relation:

P(ν;Θ) =
nmax∑
n=n0

�max∑
�=0

�∑
m=−�

E�m(i) S n�

1 + 4
Γ2

n�
(ν − νn� − mνs)2

+ N(ν), (10)

where we have also included a profile describing the background
signal, N(ν). Granulation, faculae and active regions might con-
tribute to the stellar background signal, which is commonly
modelled as a sum of power laws describing these physical phe-
nomena (Harvey 1985; Aigrain et al. 2004):

N(ν) =
kmax∑
k=1

4A2
k Bk

1 + (2πBkν)Ck
+ N, (11)
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Table 1. Relative spatial response functions, V�/V0, for a number of
present and upcoming instruments/missions.

Intensity Velocity
VIRGO CoRoT Kepler HARPS SONG

(862 nm) (660 nm) (641 nm)a (535 nm) (550 nm)
V0/V0 1.00 1.00 1.00 1.00 1.00
V1/V0 1.20 1.22 1.22 1.35 1.35
V2/V0 0.67 0.70 0.71 1.02 1.01
V3/V0 0.10 0.14 0.14 0.48 0.47
V4/V0 –0.10 –0.09 –0.08 0.09 0.09

Notes. Notice the increased sensitivity to � = 3, 4 modes in velocity.
Negative values of V� mean that the oscillations will appear to have
reversed phases. (a) Calculated as the weighted mean over the spectral
response function.

{Ak} and {Bk} being, respectively, the corresponding amplitudes
and characteristic time-scales, whereas the {Ck} are the slopes
of each of the individual power laws. A flat component, N, is
needed in order to model the photon shot noise. Equation (11)
might just well incorporate any instrumental background signal.
We refer to S n�/N(νn�) as the signal-to-noise ratio (in power) of
the multiplet (n, �).

Once again assuming energy equipartition between the dif-
ferent components of a multiplet, their heights can be ex-
pressed as:

S n�m = E�m(i) S n� = E�m(i) V2
� αn�. (12)

The quantity V2
� is an estimate of the geometrical visibility of the

total power in a multiplet (n, �) as a function of �, whereas αn�
depends mainly on the frequency and excitation mechanism, i.e.,
αn� � α(νn�). Christensen-Dalsgaard (2003) concisely treats this
issue of spatial filtering. Equation (12), however, is only strictly
valid under one assumption: when the stellar flux is integrated
over the full apparent disc, one must assume that the weighting
function, W, which gives the contribution of a surface element
to the integral, is a function of the distance to the disc centre
alone, i.e., W = W(θ′), where θ′ is defined in an inertial frame
with polar axis pointing toward the observer. In this case, the
apparent mode amplitude can effectively be separated into two
factors: E�m(i) and V2

� . This assumption holds very well in the
case of intensity measurements, since the weighting function is
then mainly linked to the limb-darkening, whereas for velocity
measurements departures might be observed due to asymmetries
in the velocity field induced by rotation (see Ballot et al. 2006,
2008, and references therein). See Appendix A for how to com-
pute E�m(i) and V�.

The heights of non-radial modes are commonly defined
based on the heights of radial modes according to Eq. (12), and
taking into account the V�/V0 ratios. Note that � = 0 modes con-
stitute a sensible reference since they are not split by rotation.
Table 1 displays the relative spatial response functions, V�/V0,
computed according to Bedding et al. (1996), for a number of
present and upcoming instruments/missions used when measur-
ing solar-like oscillations. Those performing intensity measure-
ments are the red channel of the VIRGO SPM instrument on
board the SOHO spacecraft (Fröhlich et al. 1995), as well as the
CoRoT and Kepler space missions. On the other hand, veloc-
ity measurements are performed by the HARPS spectrograph
(Mayor et al. 2003) and are the purpose of the forthcoming
SONG network (Grundahl et al. 2007).

Finally, a possible set of parameters going into the model is
given by:

Θ = {S n�, νn�, Γn�, νs, i, Ak, Bk,Ck,N} . (13)

We have described in detail how the modelling of a power spec-
trum of solar-like oscillations can be achieved. When actually
fitting a model to an observed power spectrum, the set of param-
eters entering the model might differ from the one represented in
Eq. (13). Moreover, it might be desirable to justifiably fix some
of the parameters in order to reduce the dimension of parameter
space.

3. Bayesian inference

Having set up the model of the power spectrum, we will now
introduce the Bayesian statistical framework to be used for es-
timating the model parameters and for comparing competing
models. Let us start by considering a set of competing hypothe-
ses, {Hi}, not necessarily mutually exclusive. We should then be
able to assign a probability, p(Hi|D, I), to each hypothesis, taking
into account the observed data, D, and available prior informa-
tion, I, arising from theoretical considerations and/or previous
observations. This is done through Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I)p(D|Hi, I)

p(D|I)
· (14)

The probability of the hypothesis Hi in the absence of D is called
the prior probability, p(Hi|I), whereas the probability includ-
ing D is called the posterior probability, p(Hi|D, I). The quan-
tity p(D|Hi, I) is called the likelihood of Hi, p(D|I) being the
global likelihood for the entire class of hypotheses. Bayesian in-
ference thus encodes our current state of knowledge into a poste-
rior probability concerning each member of the hypothesis space
of interest. Moreover, the sum of the posterior probabilities over
the hypothesis space of interest is unity, and thus

p(D|I) =
∑

i

p(Hi|I)p(D|Hi, I). (15)

3.1. Parameter estimation

Very often a particular hypothesis, i.e., a model of the power
spectrum, is assumed to be true and the hypothesis space of in-
terest then relates to the values taken by the model parametersΘ.
These parameters are continuous, which means that the quantity
of interest is a PDF. The global likelihood of model M, assumed
true, is now given by the continuous counterpart of Eq. (15):

p(D|I) =
∫

p(Θ|I) p(D|Θ, I) dΘ. (16)

Let us restate Bayes’ theorem in order to account for this new
formalism:

p(Θ|D, I) =
p(Θ|I)p(D|Θ, I)

p(D|I)
, (17)

where we have substituted the hypothesis, Hi, with the param-
eters of the model that is assumed true. The terms entering this
equation have the same meaning as the corresponding terms en-
tering Eq. (14). Use of Eq. (17) allows one to obtain the full joint
posterior PDF, p(Θ|D, I), this being the Bayesian solution to the
problem of parameter estimation in contrast to traditional point
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estimation methods (e.g. MLE). The procedure of marginalisa-
tion makes it possible to derive the marginal posterior PDF for
a subset of parameters ΘA, by integrating out the remaining pa-
rameters ΘB, called nuisance parameters:

p(ΘA|D, I) =
∫

p(ΘA,ΘB|D, I) dΘB. (18)

Furthermore, assuming that the prior onΘA is independent of the
prior on the remaining parameters, then by applying the product
rule we have:

p(ΘA,ΘB|I) = p(ΘA|I)p(ΘB|ΘA, I) = p(ΘA|I)p(ΘB|I). (19)

We will be working, in practice, with logarithmic probabilities.
The global likelihood of the model plays the role of a normali-
sation constant and we rewrite Eq. (17) as follows:

ln p(Θ|D, I) = const. + ln p(Θ|I) +L (Θ). (20)

3.2. Model comparison

We might also be facing a situation wherein several parametrized
models are available to describe the same physical phenomenon.
We then expect Bayes’ theorem to allow for a statistical compar-
ison between these competing models. In fact, Bayesian model
comparison has a built-in Occam’s razor, a principle also known
as lex parsimoniae, by which a complex model is automatically
penalised, unless the available data justifies its additional com-
plexity. Notice that these might be intrinsically different models
or similar models with varying number of parameters, or even
the same model with different priors for its parameters.

Given two or more competing models, {Mi}, and our prior
information, I, being in the current context that one and only
one of the models is true, we can assign individual probabilities
similarly to what has been done in Eq. (14), after substituting Hi

with Mi:

p(Mi|D, I) =
p(Mi|I)p(D|Mi, I)

p(D|I)
, (21)

where p(D|Mi, I), also called the evidence of model Mi, is given
by Eq. (16). The problem of model comparison is therefore anal-
ogous to the problem of parameter estimation as can be seen by
comparing Eqs. (17) and (21).

Of particular interest to us will be calculating the ratio of the
probabilities of two competing models,

Oi j ≡ p(Mi|D, I)
p(M j|D, I)

=
p(Mi|I)p(D|Mi, I)
p(M j|I)p(D|M j, I)

=
p(Mi|I)
p(M j|I)

Bi j, (22)

where Oi j is the odds ratio in favour of model Mi over model M j,
Bi j is the so-called Bayes’ factor and the remaining factor is the
prior odds ratio. We will always assume that we have no prior
information impelling us to prefer one model over the other, and
hence p(Mi|I)/p(M j|I) = 1. One is now naturally in need of a
scale by which to judge the ratio of the evidences of two com-
peting models. The usual scale employed is the Jeffreys’ scale
(Jeffreys 1961), which we display in Table 2 for convenience.

Furthermore, the Bayesian framework makes it possible to
extract parameter constraints even in the presence of model
uncertainty, i.e., when the implementation of model selection
has not been successful. This is done by simply combining the
probability distribution of the parameters within each individ-
ual model, weighted by the model probability. This procedure,
called Bayesian model averaging (see Liddle 2009, and refer-
ences therein), is an analogue of the superposition of eigenstates
of an observable in quantum mechanics.

Table 2. Jeffreys’ scale.

ln Oi j Strength of evidence
<1 Not worth more than a bare mention
1–2.5 Significant
2.5–5 Strong to very strong
>5 Decisive

3.3. Ignorance priors

The main advantage of the Bayesian framework when compared
to a frequentist approach is the ability to incorporate relevant
prior information through Bayes’ theorem and evaluate its effect
on our conclusions. Assuming that the prior on each parameter is
independent of the prior on any other parameter, then according
to Eq. (19) we have:

p(Θ|I) =
∏

k

fk(Θk), (23)

where fk(Θk) is the prior PDF associated with the kth parame-
ter entering the model. As our state of knowledge of a particular
physical phenomenon evolves through continued study and ex-
perimentation, the set of priors relevant for the analysis of a new
data set will change. In the early stages of research, however,
we look for a set of priors that encode our rather limited state of
knowledge, i.e., a set of ignorance priors (e.g., Gregory 2005a,
and references therein).

When dealing with location parameters, e.g. {νn�} in
Eq. (13), our choice of prior would at first be the uniform prior:

fk(Θk) =

{ 1
Θmax

k −Θmin
k

, for Θmin
k ≤ Θk ≤ Θmax

k ,

0, otherwise.
(24)

If we are ignorant about the limits Θmin
k and Θmax

k , then we re-
fer to fk(Θk) as an improper prior, meaning that it is not nor-
malised. An improper prior is not suitable for model comparison
problems. On the other hand, when dealing with scale parame-
ters, e.g. {S n�} in Eq. (13), our choice of prior might be that of a
Jeffreys’ prior:

fk(Θk) =

{ 1
Θk ln[Θmax

k /Θmin
k ] , forΘmin

k ≤ Θk ≤ Θmax
k ,

0, otherwise .
(25)

By employing a Jeffreys’ prior we are assigning equal probabil-
ity per decade (scale invariance), mainly useful when the prior
range spans several orders of magnitude. In case the prior lower
limit includes zero, a modified Jeffreys’ prior should be used in-
stead to avoid the divergence at zero:

fk(Θk) =

{ 1
Θk+Θ

uni
k ln[Θuni

k +Θ
max
k /Θuni

k ] , for0 ≤ Θk ≤ Θmax
k ,

0, otherwise.
(26)

For Θk � Θuni
k , Eq. (26) behaves just like a Jeffreys’ prior,

whereas for Θk � Θuni
k it behaves like a uniform prior, thus

not diverging at zero. Θuni
k marks the transition between the two

regimes.

4. Markov chain Monte Carlo

After inspection of Eq. (18), the need for a mathematical tool
that is able to efficiently evaluate the multi-dimensional integrals
required in the computation of the marginal posteriors becomes
clear. This constitutes the rationale behind the method known as
Markov chain Monte Carlo, first introduced in the early 1950s
by statistical physicists and nowadays widely used in all areas of
science and economics.
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4.1. Metropolis-Hastings algorithm

The aim is to draw samples from the target distribution,
p(Θ|D, I), by constructing a pseudo-random walk in model pa-
rameter space such that the number of samples drawn from a
particular region is proportional to its posterior density. Such a
pseudo-random walk is achieved by generating a Markov chain,
whereby a new sample, Xt+1, depends on the previous sample3,
Xt, in accordance with a time-independent quantity called the
transition kernel, p(Xt+1|Xt). After a burn-in phase, p(Xt+1|Xt) is
able to generate samples of Θ with a probability density con-
verging on the target distribution. The Markov chain must fulfil
three requirements in order to achieve this convergence: it must
be irreducible, aperiodic and positive recurrent (Roberts 1996).

The algorithm that we employ in order to generate a Markov
chain was initially proposed by Metropolis et al. (1953), and sub-
sequently generalised by Hastings (1970), this latter version be-
ing commonly referred to as the Metropolis-Hastings algorithm.
It works in the following way: Suppose the current sample, at
some instant denoted by t, is represented by Xt. We would like
to steer the Markov chain toward the next sampling state, Xt+1,
by first proposing a new sample to be drawn, Y, from a pro-
posal distribution, q(Y |Xt), centred on Xt. Here we specifically
treat q(Y |Xt) as being a multivariate normal distribution with co-
variance matrix Σ. We employ independent Gaussian parameter
proposal distributions and thus Σ is assumed diagonal. The pro-
posed sample is then accepted with a probability given by:

α(Xt, Y) = min(1, r) = min

[
1,

p(Y |D, I)
p(Xt|D, I)

q(Xt|Y)
q(Y |Xt)

]
, (27)

where α(Xt, Y) is the acceptance probability and r is called the
Metropolis ratio. In the present case of a symmetric proposal
distribution, we have q(Xt|Y)=q(Y |Xt). As a result, if the poste-
rior density for the proposed sample is greater than or equal to
that of the current sample, i.e., p(Y |D, I) ≥ p(Xt|D, I), then the
proposal will always be accepted, otherwise it will be accepted
with a probability given by the ratio of the posterior densities. If
Y is not accepted, then the chain will keep the current sampling
state, i.e., Xt+1 = Xt. The procedure just described is repeated
for a predefined number of iterations or, alternatively, for a num-
ber of iterations determined by a convergence test applied to the
Markov chain (e.g., Gelman & Rubin 1992). The total number
of iterations is denoted by nit.

Once a Markov chain has been created, the problem of
marginalization becomes trivial, as the way to extract informa-
tion on the individual parameters is simply to generate a his-
togram for each parameter and thus obtain its PDF. An appropri-
ate number of bins in the histograms can be selected using for
example Scott’s criterion (Scott 1979). Usually the information
in the PDF will be condensed using some summary statistics,
like for example finding the median of the distribution and the
68% credible region around it.

4.2. Parallel tempering

The Metropolis-Hastings algorithm outlined above might be-
come stuck in a local maximum of the target distribution, thus
failing to fully explore all regions in parameter space containing
significant probability. A way of overcoming this is to employ
parallel tempering (e.g., Earl & Deem 2005), whereby a discrete
set of progressively flatter versions of the target distribution are

3 A remark on the notation: Xt may be thought of as a single vector in
parameter space.

β = 1.00

β = 0.83

β = 0.69
β = 0.58
β = 0.48
β = 0.40

High temperature – Broad search

Low temperature – Narrow refinement

B
ur

n-
in

t

Fig. 2. Schematic representation of the functioning of the parallel tem-
pering mechanism, whereby tempering chains are allowed to swap their
parameter states (swaps are indicated by vertical arrows).

created by introducing a temperature parameter, T . In practice,
use is made of its reciprocal, β = 1/T , referred to as the temper-
ing parameter. By modifying Eq. (17), we generate the tempered
distributions as follows:

p(Θ|D, β, I) ∝ p(Θ|I) p(D|Θ, I)β , 0 < β ≤ 1. (28)

For β = 1, we recover the target distribution, also called the cold
sampler, whereas for β < 1 the hotter distributions are effec-
tively flatter versions of the target distribution. Drawing samples
from a hotter, i.e., flatter, version of the target distribution will
allow, in principle, to visit regions of parameter space containing
significant probability, otherwise not accessible to the basic al-
gorithm. The problem of parameter estimation obviously contin-
ues to rely on samples drawn from the cold sampler. In Sect. 4.4
we describe how samples drawn from the remaining tempered
distributions are useful in evaluating Bayes’ factor.

Implementation of parallel tempering works in the following
way: Several versions of the Metropolis-Hastings algorithm are
launched in parallel (nβ in total), each being characterised by a
different tempering parameter, βi. At random intervals, compre-
hending a mean number (nswap) of iterations, a pair of adjacent
chains, labelled with βi and βi+1, is randomly chosen and a pro-
posal is made to swap their parameter states. The proposed swap
is then accepted with a probability given by:

αswap = min(1, rswap)

= min

[
1,

p(Xt,i+1|D, βi, I)p(Xt,i|D, βi+1, I)
p(Xt,i|D, βi, I)p(Xt,i+1|D, βi+1, I)

]
, (29)

where, at instant t, chain βi is in state Xt,i and chain βi+1 is in
state Xt,i+1. By running such a set of cooperative chains, we ef-
fectively enable the algorithm to sample the target distribution
in a way that allows for both the investigation of its overall fea-
tures (low-β chains) and the examination of the fine details of a
local maximum (high-β chains). A schematic representation of
the functioning of the parallel tempering mechanism is shown in
Fig. 2. In Fig. 3, a version of the Metropolis-Hastings algorithm
is shown, written in pseudocode, and with the inclusion of the
parallel tempering mechanism.

Concerning the values taken by the tempering parameter,
{βi}, optimal values are chosen in order to achieve a swap ac-
ceptance rate between adjacent levels of ∼50%. Heuristically,
we can assert that by employing a geometric progression (cf.
Benomar et al. 2009a),

βi = λ
1−i, (30)

such a desideratum is reached by setting λ ∼ 1.2. The number of
chains, nβ, should be chosen such as to reach a desired balance
between sampling efficiency and computational time. However,
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Fig. 3. Version of the Metropolis-Hastings algorithm written in pseu-
docode and with the inclusion of parallel tempering.

when using the parallel tempering mechanism in model compar-
ison problems, as we will get back to in Sect. 4.4, a large number
of tempering chains are needed (typically nβ � 10). The value of
nswap should be chosen inversely proportional to nβ (typically a
few dozens).

4.3. Automated MCMC

So far we have not mentioned the need to adequately choose
the set {σ} of diagonal elements of the Σ matrix, indicating the
width of the Gaussian proposal distribution for each parame-
ter. The set of individual σ values specifies the direction and
step size in parameter space when proposing a new sample to
be drawn. The optimal choice of {σ} is closely related to the
average rate at which proposed state changes are accepted, the
so-called acceptance rate. Accordingly, small σ values will lead
to a large acceptance rate, with successive samples being highly
correlated and ultimately requiring a large number of iterations
in order to yield equilibrium distributions of model parameters.
On the other hand, large σ values will lead to a low acceptance
rate, meaning that proposed state changes will seldom be ac-
cepted. This is illustrated in Fig. 4, where the same simplified
target distribution is sampled by three chains, each being char-
acterised by a set of σ values differing on the respective mag-
nitudes. Roberts et al. (1997) recommend, based on empirical
studies, calibrating the acceptance rate to ∼25% when dealing
with a high-dimensional model as it is the case when perform-
ing a global peak-bagging.
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Fig. 4. The same target distribution sampled by three chains, each be-
ing characterised by a different set {σ}. The contours map the target
distribution, which in turn depends only on the parameters Θ1 and Θ2.
The starting point in each of the chains is (Θ1,Θ2) = (−4.5,−4.5) and
all contain 2000 iterations. Both parameters share a common σ-value
whose optimal setting is σ = 1. It is important to note that given a suffi-
ciently large number of iterations, all the chains would eventually map
out the target distribution, however an optimal choice of the proposal
distribution will result in significantly faster convergence.

One could, of course, employ a trial-and-error approach and
manually calibrate the σ values. However, since we are dealing
with a large number of parameters that, in addition, correspond
to several different physical quantities, this would quickly be-
come very time-consuming and impractical. We instead employ
an automated process of calibration of the proposal σ values,
which is based on a statistical control system similar to the one
described in Gregory (2005b). The control system makes use of
an error signal to steer the selection of the σ values during the
burn-in stage of a single parallel tempering MCMC run, acting
independently on each of the tempered chains. The error signal
is proportional to the difference between the current acceptance
rate and the target acceptance rate. As soon as the error signal
for each of the tempered chains is less than a measure of the
Poisson fluctuation expected for a zero mean error (computed as
the square root of the target acceptance rate times the number of
iterations between changes in the σ values), the control system
is turned off and the algorithm switches to the standard parallel
tempering MCMC. In practice this effectively marks the end of
the burn-in stage.

The control system as briefly described here is also used in
Gruberbauer et al. (2009), whereas Benomar et al. (2009a) em-
ploy a self-learning process that appropriately adapts the covari-
ance matrix, assumed non-diagonal.

4.4. Model comparison using parallel tempering MCMC

We are now interested in computing the odds ratio, Oi j, in
favour of model Mi over model M j according to Eq. (22). When
analysing solar-like oscillations, a recurrent difficulty is to cor-
rectly tag the modes of oscillation by angular degree �. There
are two possible ways of tagging the modes or, equivalently, two
competing models. Computation of Oi j is thus a means of assess-
ing which of the two identification scenarios is statistically more
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Fig. 5. Power density spectrum of HD 49933 with the best-fitting model (using prior set S2) overlaid. The shaded areas indicates the ranges of the
uniform priors on the frequencies.

likely (although not necessarily physically more meaningful, as
is often misinterpreted).

Samples drawn from the tempered distributions can, in prin-
ciple, be used to compute the global likelihood, p(D|Mi, I), of a
given model Mi. Notice that Bayes’ factor, Bi j, is defined as the
ratio of the global likelihoods of two competing models:

Bi j ≡ p(D|Mi, I)
p(D|M j, I)

= exp
[
ln p(D|Mi, I) − ln p(D|M j, I)

]
· (31)

It can be shown that the global likelihood of a model is given by
(for a derivation see Gregory 2005b):

ln p(D|Mi, I) =
∫ 1

0
〈ln p(D|Mi, X, I)〉β dβ, (32)

where

〈ln p(D|Mi, X, I)〉β =
1
n

∑
t

ln p(D|Mi, Xt,β, I) (33)

is the expectation value of the natural logarithm of the likeli-
hood for a particular tempered chain characterised by β. The set
{Xt,β} represents the corresponding samples drawn after the burn-
in stage, while n is the number of samples in each set. A suffi-
cient number (�10) of parallel tempered chains is required if we
are to estimate the integral in Eq. (32) by interpolating values of
〈ln p(D|Mi, X, I)〉β.

5. Examples

In the following we will pick a couple of examples where
we have applied the described Automated Parallel Tempering
MCMC formalism to recent measurements of solar-like
oscillators.

5.1. HD 49933: the importance of priors

We have performed an analysis of the star HD 49933, based on
180 days of photometry from the CoRoT satellite arising from
two runs: The initial 60-day run, IRa01, and 120 days from the
longer second run, LRa01. The time series was split up into seg-
ments of 30 days and the power spectra of the individual seg-
ments were averaged to construct a mean power spectrum (s = 6
in Eq. (2)). The acoustic spectrum of this F5 main-sequence star
has proven to be very difficult to interpret mainly due to the rel-
atively large linewidths (see Fig. 5). We assume the ridge identi-
fication denoted as “Scenario B” in Benomar et al. (2009b).

Table 3. Prior input for the HD 49933 analysis.

Parameter Prior
Frequencies Uniform
Heights Modified Jeffreys
Linewidths Uniform
Inclination Uniform (0◦–90◦)
Rotation S1: Uniform on νs (0–10 μHz)

S2: Gaussian on ν∗s (1.65 ± 0.17 μHz)

The acoustic spectrum was fitted using the APT MCMC for-
malism, but using two different sets of priors (see Table 3). The
first set (S1) was constructed using only ignorance priors, while
the second set (S2) includes knowledge about the stellar rota-
tion. From spectroscopic and asteroseismic studies of HD 49933,
Bruntt (2009) was able to constrain the rotation of the star to
v sin(i) = 10 ± 1 km s−1 and the radius to R/R� = 1.385± 0.031,
which can be combined to impose a constraint on the projected
rotational splitting, ν∗s = νs sin(i), of 1.65 ± 0.17 μHz. In set
S2 this knowledge is added as a gaussian prior on the projected
splitting of the star. In both cases the fits were done using the
following configuration:

– 15 orders were fitted with � = 0, 1, 2 modes in a fitting win-
dow spanning from 1220 to 2465 μHz (see Fig. 5);

– one linewidth and one height per order assigned to the � = 0
mode, and then linearly interpolated by frequency and scaled
to the higher degree modes;

– rotation and inclination angle fitted with the two free param-
eters, ν∗s and i;

– the background was parametrized as a sum of 3 Harvey-like
models plus a white noise contribution;

– 800 000 samples were drawn from the target distribution,
employing 10 parallel chains.

First of all, it is important to note that the results are consistent
with the ones reported in Benomar et al. (2009b). For example
the derived frequencies and linewidths are all well within the
error bars. We will here focus on the results of the rotational
splitting and inclination angle. The probability density functions
for the fitted parameters when using ignorance priors (S1) are
shown in Fig. 6a and, after applying the Gaussian prior on the
projected splitting (S2), the results change to the ones shown in
Fig. 6b.

What these results demonstrate is, first of all, that these tech-
niques are extremely efficient at probing and constraining pa-
rameters which traditional methods would have considerable
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Fig. 6. Results on the rotation and inclination angle of HD 49933. In
both cases the prior on the inclination angle is uniform in the interval
0◦–90◦. a) We employ a uniform prior on rotation (S1). b) We employ
a Gaussian prior on projected rotation (S2). The vertical lines in the
histograms indicate the median and the boundaries of the 68% credible
regions of the distributions. The dashed line in the top figures indicates
the frequency resolution in the spectrum.

difficulty in constraining. In Benomar et al. (2009b), where
similar techniques are employed, the derived inclination angle
was 17◦+7◦

−9◦ and the rotational splitting placed in the range 3.5–
6.0 μHz, with which our results are perfectly consistent with.
Another point to be drawn from this example is the impor-
tance of the inclusion of prior knowledge. By incorporating our
prior knowledge about the rotation of the star through the ac-
curate measurements from a spectral analysis, we are able to
yield a much cleaner constraint on the inclination angle, which
in Fig. 6a has a considerable tail of probability towards large
inclinations.

It is important to note that this prior on ν∗s is strong in the
sense that it dominates the fit. This simply comes from the fact
that the data do not provide any further information on this pa-
rameter and so our prior knowledge of the model is still pro-
viding the best constraint. In such cases one of course has to be
careful that such a strong prior is not wrongfully restrictive. If
other effects (in this case, for instance, differential rotation or
second-order rotational effects) were present, this could intro-
duce biases to the fitted results. This could of course be tested
using the methodology described in Sects. 3.2 and 4.4, by con-
structing models that incorporate these effects and testing their
significance.

5.2. Procyon: the problem of ridge identification

Here we address the issue of tagging the oscillation modes by
angular degree in the case of the F5 star Procyon. We have
thus reanalysed the data acquired during a multi-site campaign
(Arentoft et al. 2008; Bedding et al. 2010b) carried to observe os-
cillations in this star. The data consist of high-precision velocity
observations obtained over more than three weeks with eleven
telescopes, representing the most extensive campaign organised
so far on a solar-type oscillator.

The problem of ridge identification in F stars dates back
to when CoRoT observations of HD 49933 were first analysed
(Appourchaux et al. 2008), a problem that would be recently
solved for this star only after a new longer time series was made
available (Benomar et al. 2009b). Bedding et al. (2010b) ad-
dress this same problematic in the case of Procyon by employ-
ing three distinct methodologies: (i) a collapsed power spec-
trum along several radial orders; (ii) a scaled échelle diagram
(Bedding & Kjeldsen 2010); and (iii) Bayesian model compari-
son (as described in Sect. 4.4). The last-mentioned methodology
statistically favours their Scenario A over their Scenario B iden-
tification, whereas the first and second methodologies suggest
the contrary although without quantifying their preference for
Scenario B in a statistical sense.

We performed a peak-bagging of the power spectrum of
Procyon considering both identification scenarios while simul-
taneously testing for the presence of � = 3 modes. This gives
a total of four competing models, i.e., {MA,M�=3

A ,MB,M�=3
B },

the notation chosen to be unambiguous. The details of the peak-
bagging as implemented here slightly differ from those presented
in Bedding et al. (2010b), and especially concern the limits of
the fitting window and the way in which the background was
parametrized. The details are as follows:

– The peak-bagging was performed on the sidelobe-optimised
power density spectrum whose intrinsic frequency resolution
is 0.77 μHz. Peaks were described by symmetric Lorentzians
centred on the mode frequencies. Three frequencies were
fitted per overtone, each with a different angular degree
(� = 0, 1, 2). Type of prior imposed at first: independent and
uniform, centred (±8 μHz) on the initial guesses. The mode
frequencies were further constrained to lie close to the ridge
centroids and to have only small jumps from one order to the
next. Also, a Gaussian prior (μ = 4 μHz, σ = 5 μHz) was
imposed on the small frequency separation, δν02, between
adjacent modes with � = 0 and � = 2. The small separation
was not itself a free parameter in the fit, but instead a derived
quantity. Note that the last-mentioned constraint implies that
the type of prior on the � = 0, 2 frequency parameters is ulti-
mately not independent nor uniform. Optionally, modes with
� = 3 could be included in the model with their frequencies
fixed to

νn−1,3 = νn,1 − 5
3 (νn,0 − νn−1,2), (34)

according to the asymptotic relation (Tassoul 1980). A total
of 14 overtones were considered and the fitting window runs
from 500 to 1300 μHz. By employing this construction it
is assumed that no mixed modes are present in the fitting
window. The inclusion of � = 3 modes does not add any
more free parameters, while adding however their features
to the model spectrum which are derived from the fitted � =
0, 1, 2 frequencies.

– The linewidth was parametrized as a linear function of fre-
quency, defined by two parameters Γ600 and Γ1200, which are
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Table 4. Model probabilities.

Model ln p(D|Model, I) Probability
MA 2789.723 39.25%

M�=3
A 2790.046 54.23%

MB 2785.806 0.78%
M�=3

B 2787.801 5.74%

the values at 600 and 1200 μHz, respectively. Both parame-
ters were fitted. Type of prior imposed: uniform in the range
0–10 μHz.

– The heights of radial modes in units of power density were
fixed according to Chaplin et al. (2008b):

S n0 =
2 A2 T
πTΓn0 + 2

, (35)

where A2 is the total power of the mode as determined from
the power envelope for radial modes (Kjeldsen et al. 2008),
and T is the effective length of the observational run. The
heights of non-radial modes were then defined based on the
heights of radial modes according to Eq. (12), and taking
into account the appropriate V�/V0 ratios given in Table 1 of
Kjeldsen et al. (2008).

– The background was parametrized as a linear function of fre-
quency since it had previously been suppressed at low fre-
quencies (high-pass cut at 280 μHz) to effectively remove
slow variations.

– The inclination angle between the direction of the stellar ro-
tation axis and the line of sight was fixed at 31.1◦, which is
the inclination of the binary orbit and is consistent with the
rotational modulation of the velocity curve. The rotational
splitting was fixed at 0.7 μHz, which was chosen to match
the observed value of v sin(i) = 3.16 km s−1 (Allende Prieto
et al. 2002), given the known radius of the star of 2.05 R�
(Kervella et al. 2004).

– We drew ∼800 000 samples from the target distribution after
a burn-in phase. We employed 12 parallel tempered chains.

– We thus have a total of 46 free parameters, namely, 42 fre-
quencies, 2 parameters for the linewidth and 2 parameters
for the background.

Table 4 summarises the model selection calculations assuming
equal prior probabilities for the models belonging to our dis-
crete model space. Individual probabilities are assigned to mod-
els according to Eq. (21). Similarly to Bedding et al. (2010b),
Bayesian model comparison again statistically favours Scenario
A over Scenario B. Furthermore, the presence of residual power
due to � = 3 modes is suggested. Computing Bayes’ factor in
favour of model M�=3

A over model M�=3
B gives a factor of approx-

imately 9:1 or, equivalently, a logarithmic factor of 2.2, which
classifies as “significant” on Jeffreys’ scale. Figure 7 displays
the power density spectrum of Procyon in échelle format with
the fitted frequencies for model M�=3

A overlaid.

6. Summary and discussion

In this paper, we have presented the basic theory and methods
behind the extraction of parameters from the power spectra of
solar-like stars. In order to handle the ever rising quality and
complexity of modern asteroseismic data, we have developed
a tool (APT MCMC) that enables us to constrain parameters
associated with the subtlest features in the spectra. The algo-
rithm has been extensively tested and performs extremely well,

Fig. 7. Power density spectrum of Procyon (smoothed to 2 μHz) in
échelle format. The fitted frequencies for model M�=3

A appear as overlaid
filled symbols. Symbol shapes indicate mode degree: � = 0 (circles),
� = 1 (triangles), � = 2 (squares).

not only in the traditional case of extracting oscillation frequen-
cies, but also when pushing the limit where traditional methods
have difficulties, such as constraining linewidths, rotational split-
tings and stellar inclination angles. In this work we have focused
on data in the signal-to-noise regime of current asteroseismic
measurements. In the case of very high signal-to-noise ratios,
other features in the power spectrum becomes important, such as
mode asymmetries and rotational splittings dependent on �, aris-
ing from differential rotation with radius. In future work these
effects will be incorporated into the program and tested on solar
data.

One disadvantage of the method is that it can be quite com-
putationally intensive, both to implement and run, when com-
pared to traditional MLE fits. This is however balanced by the
much added information outputted from the fits, specifically in
the probability distributions of each parameter, making it easy
to obtain accurate, reliable and realistic error bars on the results
– a feature seriously missing from the traditional methods. The
parameter estimation also benefits enormously from the possibil-
ities the Bayesian formalism provides with inclusion of prior in-
formation. This not only allows control of the fit to, for example,
not allow unphysical parameter combinations, but also include
information into the fit that is better constrained by other mea-
surements (as we saw in Sect. 5.1). Another powerful feature of
the method lies in the parallel tempering, which not only keeps
the fits from getting stuck in local maxima, but also provides
an objective way of comparing different competing models, as it
provides a way of calculating the global likelihood. This can for
example be utilized in the familiar problem of ridge identifica-
tion in solar-like stars (see Sect. 5.2).
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A thing to keep in mind is also that the APT MCMC al-
gorithm is completely general, in the sense that it could be ap-
plied to other problems without modification. MCMC methods
are being used in various branches of astrophysics: cosmology
(Liddle 2009), extra solar planets (Gregory 2005a) and stellar
model fitting (Bazot et al. 2008), but in fact the methods would
be applicable in any problem including parameter estimation.
And as computational power continues to grow, the downsides
are quickly becoming insignificant.

What could to some extent also be seen as a disadvantage of
these methods is that they can never be fully automated, in the
sense that they will not be able to handle a large number of stars
without human interaction. The whole fundamental idea behind
the Bayesian formalism is that it relies on “wise” human inputs
on the priors and model setup that should not be done in an au-
tomated way. If nothing else, take this as a positive reassurance:
You will, as an astrophysicist, never be obsolete to computers or
monkeys with keyboards.
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Appendix A: Computing E�m(i) and V�

The E�m(i) factors are given below for � ∈ [0, 4], having used
Eq. (9):

E0,0(i) = 1 , (A.1)

E1,0(i) = cos2 i ,

E1,±1(i) = 1
2 sin2 i ,

E2,0(i) = 1
4 (3 cos2 i − 1)2 ,

E2,±1(i) = 3
8 sin2(2i) ,

E2,±2(i) = 3
8 sin4 i ,

E3,0(i) = 1
64 (5 cos(3i) + 3 cos i)2 ,

E3,±1(i) = 3
64 (5 cos(2i) + 3)2 sin2 i ,

E3,±2(i) = 15
8 cos2 i sin4 i ,

E3,±3(i) = 5
16 sin6 i ,

E4,0(i) = 1
64 (35 cos4 i − 30 cos2 i + 3)2 ,

E4,±1(i) = 5
256 ( 7

2 sin(4i) + sin(2i))2 ,

E4,±2(i) = 5
128 (7 cos(2i) + 5)2 sin4 i ,

E4,±3(i) = 35
16 cos2 i sin6 i ,

E4,±4(i) = 35
128 sin8 i.

Notice that when the rotation axis is aligned with the line of sight
(i = 0◦), only the multiplet component with m = 0 is visible, thus
making inviable an inference of rotation.

The spatial response function for each �, V�, representing the
ratio of the observed amplitude to the actual amplitude, is given

here for the five lowest degree modes (Bedding et al. 1996):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
V0
V1
V2
V3
V4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2
3

1
2

2
5

2√
3

√
3

2
2
√

3
5

1√
3√

5
4

4
3
√

5

√
5

4
8

7
√

5

0
√

7
12

4
5
√

7

√
7

8

− 1
8 0 3

32
16
105

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − c c − 1 c − 1

c 1 − 2c −c
0 c 1 − c
0 0 c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ×
⎛⎜⎜⎜⎜⎜⎜⎝ 1
u2
v2

⎞⎟⎟⎟⎟⎟⎟⎠ ,
(A.2)

where u2 and v2 are wavelength-dependent classical limb-
darkening coefficients (Allen 1973) and c is a parameter defining
the observational method. This matrix product can be used for
velocity measurements by setting c = 1 and for intensity mea-
surements by setting c=0.
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ABSTRACT
Asteroseismology is able to conduct studies on the interiors of solar-type stars from the analysis
of stellar acoustic spectra. However, such an analysis process often has to rely upon subjective
choices made throughout. A recurring problem is to determine whether a signal in the acoustic
spectrum originates from a radial or a dipolar oscillation mode. In order to overcome this
problem, we present a procedure for modelling and fitting the autocovariance of the power
spectrum which can be used to obtain global seismic parameters of solar-type stars, doing so in
an automated fashion without the need to make subjective choices. From the set of retrievable
global seismic parameters we emphasize the mean small frequency separation and, depending
on the intrinsic characteristics of the power spectrum, the mean rotational frequency splitting.
Since this procedure is automated, it can serve as a useful tool in the analysis of the more than
1000 solar-type stars expected to be observed as part of the Kepler Asteroseismic Investigation
(KAI). We apply the aforementioned procedure to simulations of the Sun. Assuming different
apparent magnitudes, we address the issues of how accurately and how precisely we can
retrieve the several global seismic parameters were the Sun to be observed as part of the KAI.

Key words: methods: data analysis – methods: statistical – stars: oscillations.

1 INT RO D UCT IO N

Seismology of solar-type oscillators is a powerful tool that can be
used to increase our understanding of stellar structure and evolution.
Oscillations in main-sequence stars and subgiants have been mea-
sured, thanks to data collected from ground-based high-precision
spectroscopy (for a review see e.g. Bedding & Kjeldsen 2008) and,
more recently, to photometric space-based missions such as CoRoT
(see e.g. Appourchaux et al. 2008; Michel et al. 2008). The Kepler
mission (for a discussion on the expected results of the astero-
seismic investigation see Christensen-Dalsgaard et al. 2008; Karoff
et al. 2009) will lead to a revolution in the field of asteroseismology
of solar-type oscillators, since it will increase by more than 2 orders
of magnitude the number of stars for which high-quality observa-
tions will be available, while allowing for long-term follow-ups of
a selection of these targets. As of the time of writing of this article,
first results arising from the Kepler asteroseismic programme had
already been made available (Bedding et al. 2010; Chaplin et al.
2010; Gilliland et al. 2010; Grigahcène et al. 2010; Hekker et al.
2010b; Kolenberg et al. 2010; Stello et al. 2010).

!E-mail: campante@astro.up.pt; campante@phys.au.dk

Due to the large number of stars observed with Kepler, auto-
mated and innovative analysis pipelines/tools are needed in order to
cope with the plenitude of available data (see e.g. Huber et al. 2009;
Mosser & Appourchaux 2009; Roxburgh 2009; Hekker et al. 2010a;
Kallinger et al. 2010; Karoff, Campante & Chaplin 2010; Mathur
et al. 2010). The automated pipelines dedicated to the analysis of
acoustic spectra that have been developed so far aim mainly at mea-
suring the frequency of maximum amplitude, νmax, the maximum
mode amplitude, Amax, and the mean large frequency separation,#ν.
In the present study, we give continuity to this work by presenting
a tool capable of modelling and fitting the AutoCovariance of the
Power Spectrum (ACPS)1 of a solar-type oscillator. The current ver-
sion of the tool accepts as free model parameters the mean small fre-
quency separation parameter, D0 (see Section 3.1.2 for the definition
of this parameter), the mean rotational frequency splitting, νs, the
mean linewidth, 〈$〉, and the stellar inclination angle, i. The output
generated by this tool will hopefully contribute to further explore
the diagnostic potential of solar-like oscillations, especially that
of the large and small separations (see e.g. Christensen-Dalsgaard

1 To be precise, we compute the autocovariance of the power density
spectrum.
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2004). These two quantities can in turn be used to provide estimates
of the radii, masses and ages of solar-like stars with consistent
uncertainties (Karoff et al. 2010).

We start in Section 2 by providing a logical basis that led us to
the development of this particular analysis tool. This is followed
by a thorough description of its implementation in Section 3. In
Section 4 we apply the tool to simulated data, more specifically,
to a solar analog as it would be seen by Kepler. A discussion and
conclusions are presented in Section 5.

2 RATIO NALE BEH I N D T H E
ACPS-MODELL IN G P RO C E D U R E

Unlike a canonical peak-bagging procedure (see e.g. Anderson,
Duvall & Jefferies 1990), in the framework of the ACPS-modelling
procedure individual modes do not need to be tagged by angular
degree, i.e. by wave number %. This is required in peak-bagging to
ensure the correct model is fitted to the observed modes. Instead we
build a model that describes both the global and average properties
of the most prominent modes, which are in turn encoded on a
small set of free model parameters. This might be regarded as a
major advantage, especially if we recall the ambiguity found in
mode (angular degree) identification concerning the CoRoT target
HD 49933, only recently solved after a new longer time-series was
made available (Appourchaux et al. 2008; Benomar et al. 2009).

As it is currently implemented, the ACPS-modelling procedure as-
sumes the small frequency separation to be constant and not a func-
tion of frequency. Especially for evolved stars, this was thought not
to be a good approximation (Soriano & Vauclair 2008). However,
in the light of the first Kepler results on red giants (Bedding et al.
2010), it is perfectly valid to assume – at least for low-luminosity
red giants – a mean value of the small frequency separation between
adjacent modes with % = 0 and 2, δν02, it being in fact a nearly con-
stant fraction of #ν. Therefore, the procedure presented herein can
in principle also be employed in the case of evolved stars displaying
solar-like oscillations. The ACPS-modelling procedure will however
not provide sensible output when mixed modes (see e.g. Aizenman,
Smeyers & Weigert 1977) are present. In any event, the presence
of mixed modes will manifest clearly in the ACPS, either as a sig-
nificant broadening of the peaks or by the appearance of extra
peaks.

The way information is presented in the ACPS makes it very
amenable for fitting. In fact, the ACPS of a solar-type oscillator will
show prominent features at multiples of half the large frequency
separation, a clear manifestation of the regular frequency structure
of the acoustic spectrum. The shape of these features will depend
upon the δν02 and δν01 spacings (see Section 3.1.2 for a definition of
the latter), mode lifetime, rotation and stellar inclination. Fig. 1 dis-
plays an artificial acoustic spectrum of a solar analog (top panel) as
it would be obtained from a 30-d long Kepler’s time-series together
with a fit to its ACPS (bottom panel). Note the prominent features
in the ACPS around 135 µHz and half that value. The latter feature
is clearly split into two peaks which constitute a signature of δν01.
A signature of the δν02 spacing is also present in the wings of the
feature at #ν. The widths of either feature are generally a signature
of the mode lifetime of the oscillations, whereas the presence of
any fine structure is a signature of rotation and stellar inclination.
The ACPS depicted in Fig. 1 does indeed provide us with information
about the large and small frequency separations and mode lifetime.
The question we address first is thus: how do we extract this infor-
mation from the autocovariance of the power spectrum?

Figure 1. Top panel: artificial acoustic spectrum of a solar analog evidenc-
ing a regular frequency structure. Bottom panel: fit (black solid line) to
the corresponding ACPS obtained using the MAP as our choice of summary
statistic to represent the parameter posterior distributions. In order to en-
hance the visibility of the features in the ACPS, we have slightly smoothed
it by running a boxcar average (this is done both to the observed and to the
model ACPS). Note that the artificial star (Boris) has #ν $ 135 µHz (see
discussion in Section 4).

3 THE ACPS-MODELLING PROCEDURE

We intend to fit the observed ACPS to an ACPS created from a model
of the p-mode power density spectrum (PDS) that is described by
a slightly modified asymptotic relation, which in turn depends only
on a few free parameters (Section 3.1). Although we do not fully
explore its potential, we opt for a Bayesian approach to the fitting
problem for the simple reason that any prior information might be
taken into account, particularly useful when constraining the pa-
rameter space (Section 3.2). Most importantly, we aim at obtaining
a full joint posterior probability density function (PDF) concerning
the set of model parameters, and hence we end up employing a
Markov chain Monte Carlo (MCMC) sampler (Section 3.3).

3.1 Modelling the observed ACPS

The ACPS is computed as a function of the frequency lag, L, according
to the following expression:

ACPS(L) = 1
N

N−L−1∑
j=0

(Pj − P ) (Pj+L − P ) , (1)

where Pj is the particular value taken by the PDS at the fixed fre-
quency bin j, P is the mean value of the sample population {Pj},
i.e. the mean value of the PDS within the frequency interval of in-
terest and N is the total number of bins within this same frequency
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interval. The frequency interval of interest should be in accordance
with the p-mode range. The lag L, which is expressed in terms of
number of frequency bins, is allowed to vary between the corre-
sponding frequency values of 10 µHz and 4/3 #ν. The reason why
we constrain L to this range has to do with the fact that we are
primarily interested in measuring the small frequency separation.
The signature of the small frequency separation is in fact mainly
conveyed by the features at #ν/2 and #ν. For L less than 10 µHz
the ACPS is dominated by the signature of the window function,
whereas for L greater than approximately 4/3 #ν it reproduces the
features seen below this value of the lag and thus becoming redun-
dant. Finally, the ACPS is normalized after division by its maximum
value.

As already stated, modelling the observed ACPS consists of two
steps: (i) building a model of the subjacent p-mode PDS and (ii)
computing its autocovariance as explained above. In what follows
we provide the reader with the basic theory behind the power spec-
trum of solar-like oscillations and end up describing how the model
p-mode spectrum is generated.

3.1.1 The model

Solar-like oscillations are global standing acoustic waves, also
known as p modes, driven by near-surface turbulent convection (see
e.g. Balmforth 1992a,b). Radial oscillation modes are characterized
by the radial order n, whereas non-radial modes are additionally
characterized by the non-radial wave numbers % and m.

Ignoring any departure from spherical symmetry, non-radial
modes differing only on the azimuthal wave number m are de-
generate. Stellar rotation removes the (2% + 1)-fold degeneracy of
the frequency of oscillation of non-radial modes. When the angular
velocity of the star, ', is small and in the case of rigid-body rotation,
the frequency of a (n, %, m) mode is given to first order by (Ledoux
1951):

νn%m = νn% + m
'

2π
(1 − Cn%) . (2)

The kinematic splitting, m'/(2π), is corrected for the effect of the
Coriolis force through the dimensionless quantity Cn% > 0. In the
asymptotic regime, i.e. for high-order, low-degree p modes, rota-
tional splitting is dominated by advection and the splitting between
adjacent modes within a multiplet is νs $ '/(2π). Typically, νs& =
0.4 µHz.

The PDS of a single mode of oscillation is distributed around
a limit spectrum with an exponential probability distribution
(Woodard 1984; Duvall & Harvey 1986). This limit spectrum con-
tains the information on the physics of the mode and may be
described as a standard Lorentzian profile near the resonance. It
follows that the overall limit p-mode spectrum is given by (see
e.g. Fletcher et al. 2006):

P(ν; Sn%m, νn%, νs,$n%m, Nν)

=
nmax∑
n=n0

%max∑
%=0

%∑
m=−%

Sn%m

1 + [2 (ν − νn% − mνs)/$n%m]2 + Nν(ν) ,

(3)

where Sn%m is the mode height, νn% is the central frequency of the (n,
%) multiplet and $n%m is the mode linewidth. In the case of solar-type
oscillators and for low angular degree %, we can assume that $ is
a function of frequency alone. $ is related to the mode lifetime, τ ,
through $ = (πτ )−1. Nν describes the background signal originating
from both granulation and activity. Note we are assuming that a
mode is uncorrelated with any other modes or with the background

signal. The stellar background signal is commonly modelled as a
sum of power laws describing these physical phenomena (Harvey
1985; Aigrain, Favata & Gilmore 2004):

Nν(ν) =
kmax∑
k=1

A2
kBk

1 + (2πBkν)Ck
+ N , (4)

{Ak} and {Bk} being, respectively, the corresponding amplitudes
and characteristic time-scales, whereas the {Ck} are the slopes of
each of the individual power laws. A flat offset, N, is needed in
order to model photon shot noise.

3.1.2 The mode frequencies

Before we start modelling the observed ACPS, we first need to select
a suitable frequency interval for the purpose of our study. This
interval should coincide with the frequency range in which p modes
are located – i.e. from the frequency of the fundamental (n = 0)
mode, νf , up to the atmospheric acoustic cut-off frequency, νac.

We compute an estimate of the frequency of the fundamental
mode by assuming that it scales with the mean stellar density and
thus with the mean large frequency separation:

νf = νf& (#ν/#ν&) , (5)

where νf& = 258 µHz and #ν& = 135 µHz.
An estimate of the atmospheric acoustic cut-off frequency is

calculated by assuming that it scales with the frequency of maximum
amplitude (Kjeldsen & Bedding 1995):

νac = νac& (νmax/νmax&) . (6)

For the Sun, one has νac& = 5300 µHz and νmax& = 3100 µHz.
We proceed with the assignment of frequency values to modes

with degree % = 0, 1, 2 (see Section 3.1.3 for an explanation of
this upper limit on %) according to the asymptotic relation (Tassoul
1980):

νn% = #ν

(
n + 1

2
% + ε

)
− %(% + 1)D0 , (7)

where the quantity ε is sensitive to the surface layers and was taken
to be 1.5. Moreover, D0 is sensitive to the sound speed gradient near
the core. If equation (7) holds exactly then it follows that2 δν02 =
6D0, δν13 = 10D0 and δν01 = 2D0.

The automated Kepler pipeline (Hekker et al. 2010a) used to
supply input for the procedure described herein generates as output
the smooth second-order change in the large frequency separation
as a function of n, d#ν/dn. In cases where an estimate of d#ν/dn
is available we opt for a modified version of equation (7), which
includes a second-order correction:

νn% = #ν

(
n + 1

2
% + ε

)
− %(% + 1)D0 + (n − nmax)2 d#ν/dn

2
.

(8)

The overtone with the highest power, nmax, is given by3

round[(νmax − νf )/#ν]. For the sake of clarity, we should again
stress that individual modes in the observed PDS do not need to be
tagged by angular degree % prior to the fit. Assignment of frequency

2 δν13 is the spacing between adjacent modes with % = 1 and 3, and δν01 is
the amount by which % = 1 modes are offset from the mid-point between
the % = 0 modes on either side.
3 The round[ ] function rounds the argument to its closest integer.
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values to modes in the model of the PDS, according to either equa-
tion (7) or equation (8), is in fact done in complete ignorance of the
correct mode tagging.

3.1.3 The mode heights

The height of a multiplet component can be expressed as

Sn%m = E%m(i) Sn% = E%m(i) V 2
% αn% . (9)

The E%m(i) factor represents mode visibility within a multiplet and i
is the inclination angle between the direction of the stellar rotation
axis and the line of sight. This factor is given by (Gizon & Solanki
2003)

E%m(i) = (% − |m|)!
(% + |m|)!

[
P

|m|
% (cos i)

]2
, (10)

where Pm
% (x) are the associated Legendre functions. The quantity V2

%

is an estimate of the geometrical visibility of the total power in a (n,
%) multiplet as a function of %, whereas αn% depends mainly on the
frequency and excitation mechanism. Equation (9) is only strictly
valid under one assumption: when the stellar flux is integrated over
the full apparent disc, one must assume that the weighting function
depends only on the distance to the disc centre. In this case, the
apparent mode amplitude can effectively be separated into two fac-
tors: E%m(i) and V2

% . This assumption holds very well in the case of
intensity measurements, since the weighting function is then mainly
linked to the limb darkening, whereas for velocity measurements,
departures might be observed due to asymmetries in the velocity
field induced by rotation (see Ballot, Garcı́a & Lambert 2006; Ballot
et al. 2008, and references therein). The heights of non-radial modes
are commonly defined based on the heights of radial modes accord-
ing to equation (9), and taking into account the V%/V0 ratios (see
e.g. Bedding et al. 1996). Note that %= 0 modes constitute a sensible
reference since they are not split by rotation. In the present case of
stellar observations or when observing the Sun-as-a-star, the asso-
ciated whole-disc light integration strongly suppresses high-degree
modes due to the lack of spatial resolution. Stellar observations
are hence mostly sensitive to high-order acoustic eigenmodes with
% ≤ 3.

We compute the power envelope for radial modes as a function
of frequency according to Kjeldsen et al. (2008). We start by sub-
tracting a fit to the background signal from the observed PDS. The
residual spectrum thus obtained is heavily smoothed over the range
occupied by the p modes by convolving it with a Gaussian having
a full width at half-maximum of 4 #ν. Finally, we multiply the
smoothed, residual spectrum by #ν/c, where c is a factor that mea-
sures the effective number of modes per order and taken to be 3.03.
The height, Sn0, of a radial mode in units of power density is then
given by (Chaplin et al. 2008)

Sn0 = 2A2 T

πT $n0 + 2
, (11)

where A2 is the total power of the mode (as determined from the
power envelope for radial modes) and T is the effective observa-
tional length.

3.1.4 Setting up the model

In order to generate the model p-mode spectrum, our modelling
procedure requires the following input: The observed PDS sampled
at the true resolution (i.e. computed over a grid of uncorrelated
frequency bins), a fit to the background signal, νmax and #ν. The

gradient of the large frequency separation with n, d#ν/dn, is op-
tional. This input, with the exception of the observed PDS, might
be obtained from the automated Kepler pipelines.

A common linewidth value is assigned to all the modes (a sensible
assumption if the range in frequency of the spectrum being tested
is not too wide). The fitted parameter 〈$〉 might then be interpreted
as a mean linewidth.

The model p-mode spectrum (including the background signal)
is finally assembled according to equation (3), taking into ac-
count the global seismic parameters fitted in our procedure, namely,
D0, νs, 〈$〉 and i. In case we would want to allow for the effect of the
windowing and statistical weighting, then we should at this stage
convolve the model p-mode spectrum with the spectral window.

3.2 Bayesian inference

3.2.1 Parameter estimation

In the framework of Bayesian parameter estimation, a particular
model of the observed ACPS is assumed to be true and the hypothesis
space of interest relates to the values taken by the model parameters,
! = {D0, νs, 〈$〉, i}. These parameters are continuous, meaning
that the quantity of interest is a PDF, in contrast to traditional point
estimate methods. Let us state Bayes’ theorem:

p(!|D, I ) = p(!|I ) p(D|!, I )
p(D|I )

, (12)

where D represents the available data and the prior information is
represented by I. p(!|I ) is called the prior probability, whereas
p(!|D, I ) is called the posterior probability. The likelihood func-
tion is represented by p(D|!, I ). p(D|I), the global likelihood,
simply plays the role of a normalization constant.

The procedure of marginalization makes it possible to derive the
marginal posterior PDF for a subset of parameters !A, by inte-
grating out the remaining parameters !B, the so-called nuisance
parameters:

p(!A|D, I ) =
∫

p(!A, !B|D, I ) d!B . (13)

Furthermore, assuming that the prior on !A is independent of the
prior on the remaining parameters, then by applying the product
rule we have

p(!A, !B|I ) = p(!A|I )p(!B|!A, I ) = p(!A|I )p(!B|I ) .

(14)
The main advantage of the Bayesian framework when compared

to a frequentist approach is the ability to incorporate relevant prior
information through Bayes’ theorem and to evaluate its effect on
our analysis (see e.g. Brewer 2008, for possible applications of
Bayesian probability theory in astrophysics).

3.2.2 The likelihood function

We would like to specify the likelihood function, i.e. the joint PDF
for the data sample. We know that for a given frequency lag Li ∈
[Lmin, Lmax]:

ACPSo(Li) = ACPSm(Li) + ei , (15)

where ACPSo and ACPSm are the observed and model ACPS,
respectively. The error term ei follows a Gaussian4 distribution

4 Each point in the ACPS is the sum of a large number of independent and
identically distributed random variables. Therefore, the central limit theorem
applies and the distribution of ei should approach the normal distribution.
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with zero mean and standard deviation σ i. Hence, assuming that
the model is deterministic, i.e. true, we can write

f [ACPSo(Li)] = 1

σ
√

2π
exp

{
− e2

i

2σ 2

}
= 1

σ
√

2π
exp

{
− [ACPSo(Li) − ACPSm(Li)]2

2σ 2

}
,

(16)
where f [ACPSo(Li)] is the probability density that the observed ACPS

takes a particular value ACPSo(Li) at a frequency lag Li. Note that
we are assuming σ i to be constant over the whole range spanned by
Li.

By ignoring the effect of correlation between points in the ACPS,
we arrive at the following expression for the likelihood function:

L(!) ≡ p(D|!, I ) =
∏

i

f [ACPSo(Li)] . (17)

While the effect of correlation clearly must be present, the fact that
we ignore it can be shown to only affect attempted error calculations
and not the fitted values themselves (see Fletcher et al. 2006, and
references therein). This does not constitute a problem in the present
case, since we will be employing an MCMC sampler in order to
obtain the marginal posteriors for each of the model parameters,
from which we can estimate the uncertainties.

3.3 Markov chain Monte Carlo

After inspection of equation (13), the need for a mathematical tool
that is able to efficiently evaluate the multidimensional integrals re-
quired in the computation of the marginal posteriors becomes clear.
This constitutes the principal rationale behind the method known as
MCMC, which aims at drawing samples from the target distribu-
tion, p(!|D, I ), by constructing a pseudo-random walk in model
parameter space. Such a pseudo-random walk is achieved by gener-
ating a Markov chain, whereby a new sample, !t+1, depends solely
on the previous sample, !t , in accordance with a time-independent
quantity called the transition kernel, p(!t+1|!t ):

p(!t+1|!t )

= q(!t+1|!t ) min
[

1,
p(!t+1|D, I )
p(!t |D, I )

q(!t |!t+1)
q(!t+1|!t )

]
, (18)

where q(!t+1|!t ) is a proposal distribution centred on !t . After
a burn-in phase, p(!t+1|!t ) is able to generate samples of !

with a probability density converging on the target distribution. The
algorithm that we employ in order to generate a Markov chain was
initially proposed by Metropolis et al. (1953), and subsequently
generalized by Hastings (1970), this latter version being commonly
referred to as the Metropolis–Hastings algorithm.

The Metropolis–Hastings MCMC algorithm just outlined above
runs the risk of becoming stuck in a local maximum of the target
distribution, thus failing to fully explore all regions in parameter
space containing significant probability. A way of overcoming this
difficulty is to employ parallel tempering (see e.g. Earl & Deem
2005), whereby a discrete set of progressively flatter versions of the
target distribution is created by introducing a temperature parame-
ter, T . In practice, use is made of its reciprocal, β = 1/T , referred
to as the tempering parameter. By modifying equation (12), we
generate the tempered distributions as follows:

p(!|D,β, I ) = Cp(!|I ) p(D|!, I )β , 0 < β ≤ 1 , (19)

where C is a constant. For β = 1, we retrieve the target distribution,
also called the cold sampler, whereas for β < 1, the hotter distri-
butions are effectively flatter versions of the target distribution. By

running such a set of cooperative chains in parallel and by further
allowing for the swap of their respective parameter states, we enable
the algorithm to sample the target distribution in a way that allows
for both the investigation of its overall features (low-β chains) and
the examination of the fine details of a local maximum (high-β
chains). See Appendix A for the current version of the parallel
tempering Metropolis–Hastings algorithm written in pseudo-code.

Moreover, based on a statistical control system (CS) similar to
the one described in Gregory (2005), we automate the process of
calibration of the Gaussian proposal σCS values, which specify the
direction and step size in parameter space when proposing a new
sample to be drawn. The optimal choice of {σCS} is closely related
to the average rate at which proposed state changes are accepted, the
so-called acceptance rate. The control system makes use of an error
signal to steer the selection of theσCS values during the burn-in stage
of a single parallel tempering MCMC run, acting independently on
each of the tempered chains. The error signal is proportional to
the difference between the current acceptance rate and the target
acceptance rate. As soon as the error signal for each of the tempered
chains is less than a measure of the statistical fluctuation expected
for a zero mean error, the control system is turned off and the
algorithm switches to the standard parallel tempering MCMC.

4 APPLICATION TO SIMULATED DATA:
THE SOLAR TWIN BORIS

We display the results obtained when applying the ACPS-modelling
procedure to the particular case of Boris, an artificial main-sequence
star created in the framework of the AsteroFLAG group for the pur-
pose of conducting hare and hounds. Briefly, Boris is what we might
call a solar analog (L = 1.00 L&; Teff = 5778 K; R = 1.00 R&). We
refer the reader to Chaplin et al. (2008) and Stello et al. (2009) for
further insight into AsteroFLAG’s activities.

4.1 Experimental setup

Boris was assumed to have an apparent visual magnitude of either
V = 8 or 9 or 10 (these values correspond to the bright end of
the nominal apparent magnitude target range for Kepler). In each
case, 250 realizations of a PDS were generated. The goal was to
assess both the accuracy and the precision of the several Bayesian
summary statistics of the fitted parameters, namely, the maximum
a posteriori (MAP), the median, the mean and the marginal pos-
terior mode. These power density spectra were directly generated
in Fourier space and include contributions arising from p modes,
granulation, activity, photon shot noise and instrumental noise. They
correspond to 30-d long time-series with a 60-second cadence, as
it would be expected for Kepler’s high-cadence survey targets. The
stellar inclination angle, i, entering the simulations was allowed to
vary and was drawn from a probability distribution that assumes
random orientations – sin(i). Reference values are given for the
other model parameters by Dref

0 = 1.43 µHz, νref
s = νs& = 0.4 µHz

and 〈$〉ref = 1.95 µHz. All the remaining relevant quantities that
enter the simulations were assigned ‘solar’ values.

A prototype of the Birmingham–Sheffield Hallam automated
pipeline (Hekker et al. 2010a) was then run on the simulated
power density spectra in order to retrieve useful input for the ACPS-
modelling procedure, to be specific, a fit to the background signal,
#ν and d#ν/dn. The frequency interval of interest (for purposes
of the computation of the ACPS) ranges from 2100 to 4500 µHz and
νmax has been fixed at 3300 µHz.
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Figure 2. Sequence of 1 × 105 samples (at a thinning interval of 1) drawn
from the target distribution (β = 1) by a Metropolis–Hastings MCMC. Top
panels: behaviour of log10 [p(!|I )L(!)] as a function of the iteration num-
ber (a means of visually inspecting the convergence of the MCMC). Middle
and bottom panels: behaviour of model parameter values as a function of
the iteration number.

Figure 3. Binned marginal posterior PDFs of the model parameters. These
are built after assembling the corresponding samples (beyond burn-in) de-
picted in the middle and bottom panels of Fig. 2. Based on these marginal
posteriors, we may then evaluate the several Bayesian summary statistics
for each of the model parameters.

Figs 1, 2 and 3 display the typical graphical output of the ACPS-
modelling procedure resulting from the analysis of a single real-
ization of the PDS of Boris (with V = 8 and a random orientation
characterized by i = 32.◦4). Note that throughout the analysis of the
full set of realizations of the power spectrum, uniform priors have
been imposed on D0, νs and 〈$〉, whereas p(i|I) = sin(i).

4.2 On retrieving D0 and 〈"〉
Figs 4 and 5 result from the application of the ACPS-modelling
procedure to the full set of realizations of the power spectrum

Figure 4. PDFs of the actual errors in the determination of D0, which in
turn have been normalized after division by their standard deviation, σ err.
Several Bayesian summary statistics have been considered: (a) the MAP, (b)
the median, (c) the mean and (d) the mode. The solid black line corresponds
to the set with V = 8, whilst the solid grey line corresponds to the set with
V = 9. The dashed line represents the standard normal distribution.
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Figure 5. The same as in Fig. 4 but now regarding the estimation of 〈$〉.

(250 realizations for each value of V), allowing one to assess the
potential biases of the Bayesian summary statistics of the fitted
parameters D0 and 〈$〉, respectively. The precision associated with
these same estimators is also indicated in the plots.

When choosing a summary statistic to be used, we should make
sure that it is representative of the marginal probability distribution
of the parameter in question, a point that all the summary statistics
considered seem to satisfy. The marginal posterior PDFs of D0

and 〈$〉 are asymmetric (see Fig. 3) and well modelled by (Fierry
Fraillon et al. 1998)

f (x) = K(x/s)α exp[(x/s)α+1] , (20)

where K is a normalization constant, s is an adjustable parameter
describing the shape of the distribution and α defines the type of
distribution (α = 0 for a Boltzmann law and high values of α for a
Gaussian law). Furthermore, the set of summary parameter values
should provide a good fit to the data, the quality of which might be
assessed by computing the rms of the residuals. This latter criterion
led us to adopt the MAP as our choice of summary statistic.

It turns out from Figs 4 and 5 that the different estimators, al-
though equally robust, present biases whose magnitude and sign
vary with the estimator being considered, a direct consequence of
the asymmetry of the marginal posterior PDFs of D0 and 〈$〉. A
way of overcoming these inherent biases would be to present these
values normalized to the homologous values obtained after perform-
ing a similar analysis on Sun-as-a-star data covering an equivalent
range in frequency (i.e. scaling by the ratio of the acoustic cut-off
frequencies of the Sun and the target in question).

The MAP summary statistic allows one to determine D0 with a
relative error of 8 and 17 per cent for V = 8 and 9, respectively. On
the other hand, determination of 〈$〉 is accomplished with a relative
error of 13 and 18 per cent for V = 8 and 9, respectively.

A clear degradation of the precision associated with the estimators
is seen when considering the set of fainter objects (V = 9). This is
due to the fact that V is directly coupled to the photon shot noise
level and hence to signal-to-noise ratio (S/N).

Note that no results have been plotted concerning the set char-
acterized by V = 10 as no sensible output was generated by the
ACPS-modelling procedure. We should mention that at this S/N, the
automated pipeline is no longer capable of supplying an input value
for d#ν/dn and hence the model p-mode spectrum generated by
the ACPS-modelling procedure assumes a constant large separation
with n.

4.3 On retrieving i and νs

With the current experimental setup, we face a scenario where the
linewidths of the individual modes present in the simulated power
spectra are systematically larger than the rotational splitting, i.e.
νs ! $. Consequently, multiplet components are blended together,
which strongly correlates the inclination with the rotational split-
ting, making a successful retrieval of these global parameters not
feasible. As a further matter, the spectral resolution is too low (δν =
0.39 µHz) and will only marginally allow the rotational splitting to
be resolved. By again looking at the PDF of the inclination for a
single realization of the power spectrum in Fig. 3, we realize that
we are in fact retrieving the imposed prior since there is no enough
evidence in the data to proceed otherwise. Fig. 6 corroborates this, if
we bear in mind that imean ≡

∫ 90 ◦

0 ◦ ip(i|D, I ) di $
∫ 90 ◦

0 ◦ ip(i|I ) di =∫ 90 ◦

0 ◦ i sin(i) di = 57 ◦. Similarly, by looking at the PDF of the ro-
tational splitting for a single realization of the power spectrum in
Fig. 3, we notice that we are in fact retrieving the imposed uniform
prior, although slightly biased towards low values of the splitting.

In order to demonstrate the full capability of this tool, we have
applied it to a series of higher S/N realizations of the PDS of Boris
(assumed to have V = 8), which now correspond to six-month
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Figure 6. The posterior mean of the stellar inclination angle, imean, versus
the input inclination, i. This plot refers to the set of simulations with V = 8.

Figure 7. PDFs of νs and i resulting from the application of the ACPS-
modelling procedure to a single realization of the PDS of Boris. Reference
values are given by νref

s = 4 νs& = 1.6 µHz and iref = 60◦, and are repre-
sented by dashed vertical lines. MAP estimates are in turn given by νMAP

s =
1.44+0.26

−0.36 µHz and iMAP = 55.9◦+11.8◦
−13.2 ◦ , therefore being within uncertainties

of the reference values.

long time-series (δν = 0.06 µHz). Since we wish to avoid a sce-
nario where νs ! $ and enter a more favourable regime where
instead $ < νs ! δν02, we (i) increased the reference value for
the mean rotational splitting, νref

s ∈ {2 νs&, 4 νs&, 6 νs&}, while
(ii) simultaneously adopting a narrower frequency interval of in-
terest, ranging from 2100 to 3300 µHz, at the low-frequency end
of the acoustic spectrum. This latter step will effectively decrease
the reference value for the mean linewidth, 〈$〉ref , since we use
solar-mode linewidths when generating the artificial power density
spectra, which are known to increase towards higher frequencies.
Finally, we adopted iref = 60◦ and imposed uniform priors on all
the model parameters. Fig. 7 illustrates a case where the inclination
and the rotational splitting have been successfully retrieved, after
applying the ACPS-modelling procedure to a single realization of the
PDS of Boris.

5 SUMMA RY A N D D I S C U S S I O N

(i) We have developed a new data analysis tool based on mod-
elling and fitting the autocovariance of the acoustic PDS of a solar-
type oscillator. Its main advantage when compared to a canonical

peak-bagging procedure relies on the fact that there is no need
to carry out mode (angular degree %) identification prior to per-
forming the fit. This procedure is in principle also suitable for
being employed in the case of evolved stars displaying solar-like
oscillations.

(ii) The implementation of the ACPS-modelling procedure has
been thoroughly described. Furthermore, its automated character
makes this procedure appropriate for the analysis of a large number
of data sets (e.g. arising from the Kepler mission).

(iii) The ACPS conveys information on the large and small fre-
quency separations, mode lifetime and rotation. The current ver-
sion of the ACPS-modelling procedure accepts D0, νs, 〈$〉 and i as
free parameters. The prospective inclusion of #ν and d#ν/dn as
additional free parameters is envisaged.

(iv) The tool has been applied to simulated data mimicking what
would have been expected for a solar analog observed at high ca-
dence during Kepler’s survey phase. We assessed the potential bi-
ases as well as the precision associated with the several Bayesian
summary statistics of the fitted parameters D0 and 〈$〉, having been
able to decide on a preferred summary statistic, namely, the MAP.
We addressed a way of overcoming the inherent biases. These biases
would not in any case underpin the usefulness of this procedure,
since the preferred summary statistic is given together with robust
estimates of the uncertainties; an MCMC sampler is employed in
order to obtain the marginal posteriors for each of the model param-
eters, from which we can estimate the uncertainties. For instance,
using the SEEK routine (Quirion et al., in preparation), in order to
estimate stellar parameters and basing it on a set of asteroseismic
parameters returned by this procedure, would lead to the estimation
of a set of stellar parameters possessing robust uncertainties (see
discussion in Karoff et al. 2010).

(v) No sensible output has been generated by the ACPS-modelling
procedure for the set with V = 10. We could argue, of course, that by
increasing the effective observational length of the simulated data,
the method could successfully reach a lower S/N since realization
noise is expected to scale as 1/

√
T .

(vi) Furthermore, retrieval of both i and νs could not be achieved
with the current experimental setup and a reason for that was given
based on the intrinsic characteristics of the simulated spectra. An
example has however been included whereby the full capability of
this tool is demonstrated.
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APPENDIX A: PARALLEL TEMPERING
METROPOLIS–HASTINGS

Figure A1. Pseudo-code-written version of the parallel tempering
Metropolis–Hastings algorithm. nβ is the total number of tempered chains,
nit is the number of iterations when running the MCMC, q($|!t,i ) =
N (!t,i ; Ci ) is a multivariate Gaussian distribution centred on !t,i and with
diagonal covariance matrix, Ci , and nswap is the mean number of iterations
between successive proposals to swap the parameter states of two adjacent
chains.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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