Time-domain Astronomy

Tutorials

Tiago Campante

1 A sample R session

R is a public-domain statistical software environment used by researchers in many scientific
fields. R can be downloaded from http://www.r-project.org/. The installation includes help
files and some user manuals. Furthermore, the Comprehensive R Archive Network (CRAN) contains
a plethora of add-on packages that can be installed on-the-fly within an R session. It also includes
links to online tutorials.

Here, we analyze a hypothetical data set at the same time as we illustrate some of the uses of
elementary R functions. We start by obtaining some basic information about the session environ-
ment. The working directory can be changed using setwd. We create a simple vector using the c
function to concatenate values. This new vector is then displayed in several ways.

I. Query the session environment and make a vector of three numbers

getwd ()

setwd("/Users/myself/newdir")
sessionInfo() ; citation()

a.test <- c(33, 44, 55)

1s() ; class(a.test) ; str(a.test)
a.test ; write(file="output", a.test)

We now create a set of 500 data pairs with a given nonlinear relationship and heteroscedastic
errors (i.e., the scatter depends on the independent variable). Several useful R functions are used:
the seq function produces a regular sequence of values between specified limits; the sample function
draws random values from a data set; and the rnorm function returns normal random deviates. We
fix the random number sequence to allow the calculation to be repeated.

II. Create a 500x2 bivariate data set where the X values are evenly
distributed between O and 3 and the Y values have a nonlinear

http://www.r-project.org/

dependence on X with heteroscedastic Gaussian scatter

help(seq) ; help(sample) ; help(rnorm)

set.seed(1)

x <- sample(seq(0.01, 3, length.out=500))

y <= 0.5%x + 0.37(x"2) + rnorm(500, mean=0, sd=(0.05%(1+x72)))

We go on to present operations commonly known as exploratory data analysis, where we consider
the distributions of the X and Y variables separately. The summary function presents the minimum,
maximum, quartiles, median, and mean of a distribution directly on the console. We save this
information using write.table. The univariate summary information is then plotted using the
boxplot function. The box-and-whisker plot is a visualization of Tukey’s five-number summary of
a distribution. Though rarely used in astronomy, it is a compact and visually effective display of
robust measures of location and spread, appropriate for both small and moderately large univariate
data sets. The X distribution is symmetrical (by construction), while the Y distribution is skewed
with outliers. We also plot the univariate empirical distribution function (edf) for each variable
using ecdf. We produce PostScript figures using the dev.copy2eps function.

III. Examine, summarize and produce box-and-whisker plots
of univariate distributions

summary(x) ; summary(y)
str (summary (x))
write.table(rbind (summary(x) ,summary(y)),file="summary.txt")

help(par) ; help(boxplot)

par(mfrow=c(1,2)) # set up two-panel figure

boxplot(x, notch=T, main="Boxplot for X")

boxplot(y, mnotch=T, pch=20, cex=0.5, main="Boxplot for Y")
par (mfrow=c(1,1))

dev.copy2eps(file="box.eps")

plot(ecdf (x),pch=20,cex=0.3,main="",ylab="EDF",xlab="")
plot(ecdf (y),pch=20,cex=0.3,add=T)

text(2.0,0.5,"X") ; text(1.4,0.8,"Y")
dev.copy2eps(file="edf.eps")

The two variables are from now on treated as a multivariate data set. We bind the vectors by
columns into a matrix with cbind and coerce the result to a data frame with as.data.frame. The
data frame is made readily available for further analysis using the attach function.

IV. Put X and Y into a data frame

help(cbind) ; help(as.data.frame) ; help(names)

xy <- cbind(x, y) ; str(xy)

xy <- as.data.frame(xy)

names (xy) <- c("Xvar", "Yvar") ; str(xy)
attach(xy) ; 1sQO

We use plot to produce standard bivariate scatter plots of the variables in their original format
and after logarithmic transformation. The cor.test function gives parametric and nonparametric
correlation coeflicients with associated p-values.

V. Bivariate plots and correlation tests

help(plot)

par (mfrow=c(2,2))

plot(xy, pch=20, cex=0.5)

plot(loglO(xy), pch=20, cex=0.5, xlab="log(Xvar)", ylab="log(Yvar)")

length(x[x>2.5])
cor.test(x[x>2.5],y[x>2.5], method="pearson")
cor.test(x[x>2.5],y[x>2.5], method="kendall")

We use the function smoothScatter to produce a two-dimensional kernel density estimator. We
superpose a cubic B-spline fit to the data with smooth.spline.

VI. Kernel density estimator with spline fit

smoothScatter (logl0(xy), lwd=4, pch=20, cex=0.2, xlab="log(Xvar)",
ylab="log(Yvar)", colramp = colorRampPalette(c("white",gray(20:5/20))))
lines(smooth.spline(loglO(xy)), 1lwd=3)

We use the function 1m to fit a fifth-order polynomial function by unweighted least squares to
the logarithmic bivariate distribution.

VII. Least-squares polynomial regression

logx <- logl0(x) ; logx2 <- (loglO(x))~2 ; logx3 <- (loglO(x))~3

logx4 <- (logl0(x))~4 ; logxb <- (loglO(x))~"5

yfit <- 1m(loglO(y) ~ logx + logx2 + logx3 + logx4 + logxb)

str(yfit)

plot(loglO(x), loglO(y), pch=20, col=grey(0.5), cex=0.3,
xlab="log(Xvar)", ylab="log(Yvar)")

lines(sort(logl0(x)), yfit$fit[order(logl0(x))], lwd=3)

dev.copy2eps(file="smooth.eps")
par (mfrow=c(1,1))

2 Time series primer with R

An introduction on using R for time series analysis is given here. Visit the following link: https:
//github.com/nickpoison/astsa/blob/master/fun_with_astsa/fun_with_astsa.md. It con-
tains a useful tutorial that will guide you through several important steps in the analysis of (real
and simulated) time series using R. You will need to have the astsa package installed and loaded
before you start.

None of the real data sets you will be analyzing as part of this tutorial are astrophysical. In fact,
they concern topics as diverse as quarterly earnings per share, weekly cardiovascular mortality, or
global warming. This serves as a reminder that the concepts and tools employed during this course
are truly interdisciplinary and widely used.

3 R application: the GX 5-1 X-ray binary-star system

We use the variability of Galactic X-ray source GX 5-1 to illustrate many of the time series
capabilities of R. GX 5-1 is an X-ray binary-star system with gas from a normal companion accreting
onto a neutron star. Highly variable X-rays are produced in the inner accretion disk, often showing
stochastic red noise and quasi-periodic oscillations of uncertain origin.

The data set consists of 65536 measurements of photon counts in evenly spaced 1/128-second
bins obtained with the Japanese Ginga satellite during the 1980s. Although strictly a Poisson
process, the count rates are sufficiently high that they can be considered to be normally distributed.

I. Read in GX 5-1 data and create time series

GX.dat <- scan("https://www.dropbox.com/s/ugdOkgq9f2t7eqc/GX.dat?d1=0")
GX.time <- seq(from=0, to=512, length.out=65536)
GX.ts <- ts(GX.dat, GX.time) ; GX.ts.offset <- ts(GX.dat-30, GX.time)

Exploratory data analysis. We start with the visual exploration of the data set in a variety
of displays. The histogram of counts in each bin shows that the standard deviation is 24 % larger
than expected for a white noise process, and that asymmetry about the mean is present.

II. Compare histogram of counts to normal distribution

hist(GX.dat, breaks=100, xlim=c(40,100), ylim=c(0,3500), xlab="GX 5-1 counts",
font=2, font.lab=2, main="")

curve (dnorm(x,mean=mean(GX.dat), sd=sqrt(mean(GX.dat)))*65536, lwd=3, add=T)

sd(GX.dat) / sqrt(mean(GX.dat)) # result is 1.24

https://github.com/nickpoison/astsa/blob/master/fun_with_astsa/fun_with_astsa.md
https://github.com/nickpoison/astsa/blob/master/fun_with_astsa/fun_with_astsa.md

Examination of the time series in its raw form and after various smoothing operations does
not reveal obvious nonstationary structure to account for the extra variance, although some of the
smoothers give a hint of autocorrelated variations with a characteristic timescale around 20-50
seconds. GX 5-1 thus appears to exhibit stochastic, possibly autocorrelated and quasi-periodic,
variability that can now be investigated in detail.

III. Examine raw and smoothed time series

plot.ts(GX.ts[1:6000], ylab="GX 5-1 counts", xlab="Time (1/128 sec)",
cex.lab=1.3, cex.axis=1.3)

plot(GX.time,GX.dat, ylim=c(-10,115), xlab="Time (sec)", ylab="GX 5-1 counts",
cex.lab=1.3, cex.axis=1.3, type="n")

lines(ksmooth(GX.time, GX.dat+30, "normal", bandwidth=7), lwd=2)

text (450, 110, "Normal kernel")

lines(filter(GX.ts, sides=2, rep(1,7)/7), lwd=2)

text (450, 85, "Moving average")

lines(kernapply(GX.ts.offset, kernel("modified.daniell", 7)), lwd=2)

text (450, 50, "Modified Daniell")

lines(supsmu(GX.time, GX.dat-60), lwd=2)

text (400, 20, "Friedman’s super smoother")

lines(lowess(GX.time, GX.dat-80, 0.05), lwd=2)

text (450, 0, "Local regression")

Spectral analysis. We start with a manual construction of the Schuster periodogram based
on the script provided by |Shumway and Stoffer| (2011), before using the automated function
spec.pgram. Note that entries in the raw periodogram can be very uncertain (e.g., the 500th
spectral value is 119 with 95 % confidence interval [32,4702] assuming an asymptotic x3 distribu-
tion).

IV. Raw periodogram

f <- 0:32768/65536
I <- (4/65536) * abs(fft(GX.ts) / sqrt(65536))°2
plot (£[2:60000], I[2:60000], type="1", ylab="Power", xlab="Frequency")

Pergram <- spec.pgram(GX.ts,log="no",main="")
summary (Pergram)

Pergram$spec[500] # value of 500th point
2*xPergram$spec [600] / qchisq(c(0.025,0.975),2)

We then proceed to experiment with various smoothers to reduce the variance of the raw pe-
riodogram. Smoothing has a dramatic effect on the periodogram appearance and much is learned

about the excess variance of the time series. It appears to arise from two distinct processes: a noise
component below ~0.05 rising toward lower frequencies and a strong but broadened spectral peak
around 0.17-0.23. These are the red noise and quasi-periodic oscillations addressed in many studies
of accretion binary-star systems like GX 5-1.

V. Raw and smoothed periodogram

par (mfrow=c(3,1))

spec.pgram(GX.ts, log="no", main="", sub="")
spec.pgram(GX.ts, spans=50, log="no", main="", sub="")
spec.pgram(GX.ts, spans=500, log="no", main="", sub="")

Modeling as an autoregressive process. The red noise and quasi-periodic structure in the
GX 5-1 data are clearly seen in plots of the autocorrelation (ACF) and partial autocorrelation
(PACF) functions. The PACF is more informative: the strongest predictor of a current value are
the values separated by 4-6 time increments, while oscillations have periods around 5-6 increments.
The envelope of significant autocorrelation extends to lags of 20-30 increments.

VI. Autocorrelation functions of the GX 5-1 time series

par (mfrow=c(1,2))
acf(GX.ts, 40, main="", ci.col="black", ylim=c(-0.05,0.3), lwd=2)
pacf(GX.ts, 40, main="", ci.col="black", ylim=c(-0.05,0.3), lwd=2)

The presence of autocorrelation and (from the smoothed time series) absence of changes in the
average level motivates an AR(p) model. The ar function selects a model using the minimum Akaike
information criterion (AIC). Several computational options are provided and we chose ordinary least
squares. AR(27) is the best model, although any model with order p>20 is adequate.

VII. Autoregressive modeling

ARmod <- ar(GX.ts, method="ols")

ARmod$order # model selection based on AIC

ARmod$ar # best-fit parameter values

ARmod$asy.se.coef$ar # parameter standard errors

par(mfrow=c(1,1))

plot(0:29, logl0(ARmod$aic[1:30]), xlab="AR model parameters",
ylab="1log(AIC)", pch=20)

arrows (27, 0.4, 27, 0.0, length=0.1)

Since the AR model is stochastic, we cannot meaningfully compare its time series to the observed
GX 5-1 data. However, the Fourier spectrum of the model can be compared to the GX 5-1 spectrum.

The function spec.ar runs ar, chooses the model with the minimum AIC, and computes the Fourier
transform of the model. The spectral properties of GX 5-1 are remarkably well reproduced by the
model: the steep red noise signal at frequencies below 0.05, the shallow red noise around 0.05-0.1,
the height and width of the peak around 0.19, the slight asymmetry around the peak, the weak
harmonic around 0.38, and the spectral noise level at high frequencies.

VIII. Spectrum of AR model

ARspec <- spec.ar(GX.ts, plot=F)

GXspec <- spec.pgram(GX.ts, span=101, main="", sub="", 1lwd=2)

lines (ARspec$freq, ARspec$spec, col="red", lwd=4)

legend(0.23, 550, c("Periodogram, Daniell smooth", "AR(27) model"),
lty=c(1,1), lwd=c(2,4), col=c("black","red"))

Modeling as a long-memory process. The only spectral feature not accounted for by the
AR model is the excess signal at the very lowest frequency. This indicates that the GX 5-1 behavior
has an additional long-term memory component.

Several estimators of the long-memory parameters d and H are provided by CRAN packages
based both on frequency- and time-domain techniques. Recall that d = «/2 and Hurst’s self-
similarity parameter is given by H=d+1/2, where the spectral power is Poc(1/f)*.

The function £dGPH calculates the Geweke—Porter-Hudak estimator from linear regression on
the raw log-periodogram. It gives d=0.1040.04. The function fdSperio uses Reisen’s regression
on the log-periodogram smoothed with a lag Parzen window and obtains the same value but with
better precision, d=0.10£0.01. These values indicate a relatively weak long-memory process with
noise power scaling roughly as (1/f)%2. In the time domain, a FARIMA model calculation using
fracdiff gives a best-fit value of d=0.06.

IX. Estimates of the long-memory parameter d

install.packages("fracdiff") ; library(fracdiff)

d.FARIMA <- fracdiff(GX.ts, nar=27, nma=1, ar=ARmod$ar) ; d.FARIMA$d
d.GPH <- fdGPH(GX.ts) ; d.GPH$d ; d.GPH$sd.as

d.Reisen <- fdSperio(GX.ts) ; d.Reisen$d ; d.Reisen$sd.as

Several functions exist that compute H from the time-domain data. These results are noticeably
inconsistent. We obtain H =0.12 from an arc-hyperbolic-sine transformation of the autocorrelation
function (hurstACVF) and 0.66-1.00 from various blockings of the time series (hurstBlock). Clearly,
it is difficult to establish a consistent value for the (1/f)“-noise spectral shape. The likely cause
of these discrepant results is that the red noise in GX 5-1 is not truly fractal, such as an (1/f)*
process where the scaling of the variance follows a power law.

X. Estimates of the long-memory parameter H

install.packages("fractal") ; library(fractal)
H.ACVF <- hurstACVF(GX.ts) ; H.ACVF
H.block <- hurstBlock(GX.ts) ; H.block

Wavelet analysis. While examining the GX 5-1 time series, we did not see any short-lived
structures such as rapid increases or decreases in emission. Nonetheless, it is valuable to make
a wavelet decomposition of the time series to assist in visualization of the data set at different
timescales. Here we use CRAN’s package waveslim to construct the discrete wavelet transform
using Mallat’s pyramid algorithm and Daubechies’s orthonormal basis functions at ten different
temporal scales. As expected, no obvious structure is seen.

XI. Discrete wavelet transform

install.packages("waveslim") ; library(waveslim)

GX.wav <- dwt(GX.ts,n.levels=10)

par (mfrow=c(3,1))

plot.ts(up.sample(GX.wav[[4]],274) ,type="h", axes=T,
xlab="Time (1/128 sec)",ylab="")

abline (h=0)

plot.ts(up.sample(GX.wav[[7]],277),type="h", axes=T,
xlab="Time (1/128 sec)",ylab="",lwd=2)

abline (h=0)

plot.ts(up.sample(GX.wav[[10]],27{10}) ,type="h", axes=T,
xlab="Time (1/128 sec)",ylab="",lwd=2)

abline (h=0)

par (mfrow=c(1,1))

4 R application: programming your own MCMC algorithm

Data and goal of the analysis. We will use a data set from the Chandra Orion Ultradeep
Project (COUP). This is a time series of X-ray emission from a flaring young star in the Orion
Nebula cluster. The raw data, which approximately obey a Poisson process, give the individual
photon arrival times (in seconds) and their energies (in keV). The processed data considered here
are obtained by grouping the events into evenly spaced 10 000-second bins.

We assume that the Poisson process is piecewise homogeneous with a single change-point. [Ques-
tion: What is a change-point?] Our goal will be to identify the change-point and to estimate the
intensities of the Poisson process before and after the change-point. We first read in the data. Note
that this is just a convenient subset of the actual data set.

chptdat = read.table("https://www.dropbox.com/s/qbwiwknlsxdrhq2/
COUP551_rates.dat?d1=0",skip=1)

Next we plot the time-series data. This plot suggests that the change-point occurs around bin 10.

Y=chptdat[,2] # store data in Y
ts.plot(Y,xlab="Bin number",main="Plot of time-series data")

Model description. A Bayesian change-point model with Gamma hyperpriors is adopted from
the book by |Carlin and Louis| (2000)). [Question: What is a hyperprior?] Let Y; be the number of
occurrences of some event during time interval i. The process is observed for n time intervals and
we assume that there is a change-point at some intermediate time interval k (i.e., after time interval
k the number of counts is significantly altered). Consider the following hierarchical change-point
model:

Y0,k ~ Poisson(d) fori=1,... k; (1)
Y[\, k ~ Poisson(A) fori=k+1,...,n.
We assume that the Y; are mutually independent conditional on the parameters. [Question: What
is conditional independence?] Also, consider the following prior distributions for the model param-
eters:
0lby ~ Gamma(0.5,b1); (2)
Alba Gamma(0.5,bs) ;
by ~ InvGamma(a—0,1);

2

by ~ InvGamma(a—0,1);
k ~ UniformInt(1,...,n).

Here, we are assuming that 6, A, and k are conditionally independent, and that b; and bs are
independent.

Inference for this model is based on the five-dimensional posterior distribution f(k, 8, A, b1, b2|Y),
where Y = (Y1,...,Y,). The posterior distribution is obtained up to a multiplicative constant by
taking the product of the likelihood (i.e., the density of Y given the parameters) and the joint prior
of the parameters. [Question: Why do we neglect the aforementioned multiplicative constant?]
This gives

k n
PO 0,0,01,02[Y) o [[A0 F) [VN E) (3)
i=1 i=k+1

% g1(0]b1) g2(Alb2) k1 (b1) ha(ba) u(k)
k PYie=f Lo A\Yieg=A

=R Y 11

Y,
i=k+1
1 —0.5_—0/b 1 —0.5_—\/b
X " tox AT /b2
r05) 05 r05)605" ©
671/b1 efl/bz

1
X X X —.
T(a)by T(a)b2 n
We obtain full conditional distributions for each model parameter by ignoring all terms that are
constant with respect to that parameter. Occasionally, these full conditional distributions are well-
known distributions:

e Full conditional for 0:

f(9|k7)\7 blvaaY)

Full conditional for A:

f()‘|ka97 bla anY)

Full conditional for k:

f(k|97 >‘7b1; b2a

Full conditional for b;:

f(b1|ka 9) Aa b2a

Full conditional for bs:

f(b2|ka 97)‘7 bla

Y)

Y)

X

~ Gamma(Z Y+05

k .
Heme ' X L g-o05.-0/m
Y;! (0.5) 595

0¢
=1
o 92’;=1 Y;—~0.5,~6(k+1/b1)
u by
~ G Y; + 0.5,
amma (; + by +1>
YL' 7)\
e L 05,2/
) Y;! r'(0.5) b5
i=k+1

0<H

bo
—k)bz +1

9Y —0 n /\Yi -

Hgff!

i=k-+1

i=k+1
o Ot Yi)T Yig—kO—(n—k)X
—1/by
—0/b1 o € 1.5 —(146)/bs
17976 / X T o< bl e ()/

InvGamma(0.5,0 + 1) .

B b

6_1/b2

—A/ba %

~ b;l.Se—(l-&-)\)/bg

InvGamma(0.5, A + 1) .

(8)

Except for k, all other model parameters have standard full conditional distributions. Therefore,
we can perform Gibbs updates on them, whereby samples are drawn from their full conditionals.
The full conditional for k£ is not a standard distribution and so we need to use the more general
Metropolis—Hastings update instead of a Gibbs update. The inverse-gamma distribution is said to
be a conjugate prior for b; and by in the present case, since it results in a posterior that is also
an inverse-gamma distribution. This distribution has poorly behaved moments. For that reason, it
may be better to adopt another prior density (such as the gamma distribution).

Setting up and running the MCMC algorithm. We use the Metropolis—Hastings algorithm

to draw multiple samples from the posterior distribution (Egs. [3] to . It works as follows:

10

1. Choose a starting value for the Markov chain, say, (6o, Ao, ko, b1,0, b2,0) =(1,1,floor(n/2),1,1).
2. Update each parameter in turn at the j-th iteration, j=1,..., N:
(a) Gibbs update of §: Sample 8; from the gamma distribution in Eq. using the most

up-to-date values of k and b;.

(b) Gibbs update of A\: Sample A; from the gamma distribution in Eq. using the most
up-to-date values of k and bs.

(c) Gibbs update of by: Sample by ; from the inverse-gamma distribution in Eq. using
the most up-to-date value of 6.

(d) Gibbs update of by: Sample b ; from the inverse-gamma distribution in Eq. using
the most up-to-date value of .

(e) Metropolis—Hastings update of k:

i. Propose a new sample for k, k', according to a proposal distribution, g(k|6, A, b1,b2,Y).
In the present example, we choose

q(k|0, A, b1,b2,Y) ~ UniformInt(2,...,n—1). (9)

ii. Compute the acceptance probability, «(k, k), using the most up-to-date values of k,
0, A\, by, and by:

f(k/|07)\7b17b23Y) q(k‘aa /\7b17b27Y)
T (k|10 N\ b1,b2,Y) q(K'|0, X, b1,b2,Y)

alk, k') = min |1 . (10)

iii. Accept the proposed sample with probability a(k,k’). If accepted then set k; =&/,
otherwise keep k;=k;_1.

(f) You have now steered the Markov chain toward the new state (6;, A;, k;, b1 5,b2.5).

A file containing the R source code needed to run an MCMC algorithm for this particular ap-
plication has been made available at https://www.dropbox.com/s/87bx5bixy4eqsb5jf/MCMCchpt.
R7?d1=0L Save this file to your R working directory. Let us start by loading the source code.

source ("MCMCchpt.R")
We can now run the MCMC algorithm.
mchain <- mhsampler(dat=Y, MCMCiterations=5000)

Congratulations! You have just completed your first ever MCMC run.

MCMUC output analysis. We will now examine the output produced by the sampler and
estimate quantities of interest. For instance, in order to estimate the expectation of a marginal
distribution for a particular model parameter, we simply average all draws for that parameter.

mean(mchain[1,]) # obtain mean of first row (theta)

We may instead want to obtain estimates of the mean and median for all parameters at once.

11

https://www.dropbox.com/s/87bx5ixy4eqs5jf/MCMCchpt.R?dl=0
https://www.dropbox.com/s/87bx5ixy4eqs5jf/MCMCchpt.R?dl=0

apply(mchain,1,mean) # compute mean for all parameters at once
apply(mchain,1,median) # compute median for all parameters at once

Let us have a look at the marginal posterior distributions.

par (mfrow=c(3,2))

plot(density(mchain[1,]) ,main="smoothed density plot for theta posterior")
plot(density(mchain[2,]) ,main="smoothed density plot for lambda posterior")
plot(density(mchain[3,]) ,main="smoothed density plot for k posterior")
plot(density(logl0(mchain[4,])) ,main="smoothed density plot for loglO(bl) posterior")
plot(density(logl0(mchain[5,])) ,main="smoothed density plot for loglO(b2) posterior")
par (mfrow=c(1,1))

We compute the (posterior) probability that A is greater than 10.
sum(mchain[2,]>10) /length(mchain([2,])

We can also examine how the estimate of the expectation of the marginal distribution for k& changes
with each iteration.

install.packages("batchmeans")
library(batchmeans)
estvssamp (mchain[3,])

We would like to assess whether or not the Markov chain is moving around quickly enough
through parameter space so as to produce good parameter estimates. We call this property mixing.
A way of doing this would be to inspect the sample autocorrelations.

par (mfrow=c(3,2))

acf (mchain[1,] ,main="acf plot for theta")
acf (mchain[2,] ,main="acf plot for lambda")
acf (mchain[3,] ,main="acf plot for k")

acf (mchain[4,] ,main="acf plot for bl")

acf (mchain[5,] ,main="acf plot for b2")

par (mfrow=c(1,1))

In case the samples are heavily autocorrelated, we should rethink our sampling scheme or, at the very
least, substantially increase the number of iterations. Note that the sample autocorrelations are not
negligible for 8, A, and k. This can be easily overcome in the present application by simply running
the chain for a longer period of time, since the sampler is fast. However, when facing complex
high-dimensional problems, improving the sampler mixing can be critical. The acceptance rate for
k proposals is seen to be smaller than 10 %, meaning that samples are stagnant more than 90 % of
the time. A better proposal distribution for the Metropolis—Hastings update of a given parameter
can help improve acceptance rates, often leading to a decrease in the sample autocorrelation. You
are encouraged to experiment with different proposal distributions for k£ and inspect their effect
on the sample autocorrelation. Suggestion: repeat the analysis after modifying the source code to
draw sample proposals at random from, say, q(k|0, A, b1,b2,Y) ~ UniformInt(k —4,...,k+4). Just
in case, a file containing the modified R source code is available at https://www.dropbox.com/s/
d8dfuhm2bwb4pad/MCMCchpt_altprop.R7d1=0.

12

https://www.dropbox.com/s/d8dfuhm2bwb4pad/MCMCchpt_altprop.R?dl=0
https://www.dropbox.com/s/d8dfuhm2bwb4pad/MCMCchpt_altprop.R?dl=0

Assessing accuracy and determining chain length. There are two important issues to
consider when running an MCMC algorithm. Fisrt, how do we assess the accuracy of the parameter
estimates based on the available sample? In other words, how do we compute Monte Carlo standard
errors? Second, for how long should we run a chain before we are confident that the results are
reasonably accurate?

There is a vast literature on sophisticated methods for computing Monte Carlo standard errors
for MCMC output. One method in particular, called Consistent Batch Means Estimation, is rather
easy to implement and works reasonably well in practice. Suppose we are interested in estimating
the expectation u=F(g(X)), where X is to be sampled. The batch means method works as follows:

1. Run the Markov chain for N =bs iterations.

2. Let .

Zji(kfl)erl 9(X;)
. .

If we think of the Markov chain as having been divided into b batches of size s each, then

Z is the Monte Carlo estimate of y based on the k-th batch. The batch size s should be

large enough so that the Zj are approximately independent. A heuristic approach is to use
s=+N.

Zy =

(11)

3. Let

b
67 = == Y (% — i) (12)
k=1

Then the batch means estimate of the Monte Carlo standard error is &/v/N.

Using batch means, we compute standard errors for each of the five parameter estimates. Are these
standard errors acceptable?

bm(mchain[1,])
bm(mchain[2,])
bm(mchain[3,])
bm(mchain[4,])
bm(mchain[5,])

Finally, a simple way of determining when to stop an MCMC run is suggested that is based
on the batch means estimate of the standard errors. Run the MCMC algorithm and periodically
compute Monte Carlo standard errors for the model parameters using batch means as described
above. Once these standard errors attain a desired level of accuracy (specified by the user), stop
the simulation. Try running the MCMC algorithm once again, but this time for a million iterations.

mchain? <- mhsampler(dat=Y, MCMCiterations=1e+6)

Repeat the analysis and note whether or not the estimates and corresponding Monte Carlo standard
errors have changed with respect to the previous sampler.

Making changes to the model. We replace the priors for b; and by in Eq. by

b1 ~ Gamma(0.01,100); (13)
by ~ Gamma(0.01,100).

13

The full conditionals for 6, A, and k remain unaltered. However, we now obtain the following full
conditionals for b; and bs:

e Full conditional for by:

bilk,0,)\, by, Y) o ie*"/bl x by 0-99=01/100 14
f(| IR RAL] ’) b0.5 1
1

e Full conditional for bs:

1
Fbalk,0,0,b1,Y) ox ———eMb2 x p70:99=b2/100 15
b8.5 2

These full conditionals are not standard distributions, thus we will need to perform Metropolis—
Hastings updates on them. You should by now be able to modify the source code to accommodate
these changes. Repeat the analysis and comment on its output relative to that of the previous
sampler.

5 Rediscovering 51 Peg b with SYSTEMIC LIVE

SYSTEMIC LIVE is a web application running in your browser that allows you to visualize real
radial-velocity data sets and to fit them using a planetary-system model. It can be accessed at
http://www.stefanom.org/systemic-1live/. No installation is needed, but you need to make
sure that your browser supports the application.

A tutorial is available online that will guide you through the analysis of the radial-velocity data
set of 51 Peg, hosting the first exoplanet (51 Peg b) to be discovered around a main-sequence star
(Mayor and Queloz(|1995; Marcy et al.|1997). How do the estimated planetary parameters compare
with the ones in the original discovery paper?

You are also encouraged to analyze the data set of a star hosting a multiple-planet system.
Suggestion: v And A, the host of the first multiple-planet system to be discovered around a main-
sequence star (Butler et al.||1997] [1999: [Ligi et al.|[2012]).

6 Using PERIODO04 in the analysis of astronomical time series

PERIODO4 is a computer software especially dedicated to the statistical analysis of long astro-
nomical time series containing gaps. Like its predecessor, PERIODIS, the software provides the
tools for extracting individual frequencies from the multiperiodic content of astronomical time se-
ries and offers a flexible interface for performing multiple-frequency fits. A user guide to PERIOD04
is presented in |Lenz and Breger| (2005]).

Visit the web page of PERIOD04 at http://www.univie.ac.at/tops/Period04/ and download
the latest version of the software (make sure you read the system requirements beforehand).

Next, download the tutorial data files from the same web page. You will find two tutorials that
you are supposed to undertake. In Tutorial 1 you will use PERIOD04 to examine a data set and
determine its frequency content. You will be asked to first perform a Fourier analysis to obtain
frequency guesses and then use the fit module to refine these frequencies. Note that the Fourier
analysis cannot by itself solve the problem since it is a single-frequency method. Tutorial 2 provides

14

http://www.stefanom.org/systemic-live/
http://www.univie.ac.at/tops/Period04/

a basic introduction on how to find a multiple-frequency solution to a data set taking into account
a periodic time shift. Such a periodic time shift could be the result of orbital light-time effects (e.g.,
Mayer|/1990).

References

Butler, R. P., Marcy, G. W., Fischer, D. A., Brown, T. M., Contos, A. R., Korzennik, S. G.,
Nisenson, P., and Noyes, R. W.: 1999, ApJ 526, 916

Butler, R. P., Marcy, G. W., Williams, E., Hauser, H., and Shirts, P.: 1997, ApJ 474, L.115

Carlin, B. P. and Louis, T. A.: 2000, Bayes and Empirical Bayes Methods for Data Analysis,
Chapman & Hall/CRC Texts in Statistical Science, Chapman & Hall/CRC, second edition

Lenz, P. and Breger, M.: 2005, Communications in Asteroseismology 146, 53

Ligi, R., Mourard, D., Lagrange, A. M., Perraut, K., Boyajian, T., Bério, P., Nardetto, N., Tallon-
Bosc, 1., McAlister, H., ten Brummelaar, T., Ridgway, S., Sturmann, J., Sturmann, L., Turner,
N., Farrington, C., and Goldfinger, P. J.: 2012, A&A 545, A5

Marcy, G. W., Butler, R. P., Williams, E., Bildsten, L., Graham, J. R., Ghez, A. M., and Jernigan,
J. G.: 1997, ApJ 481, 926

Mayer, P.: 1990, Bulletin of the Astronomical Institutes of Czechoslovakia 41, 231
Mayor, M. and Queloz, D.: 1995, Nature 378, 355

Shumway, R. H. and Stoffer, D. S.: 2011, Time Series Analysis and Its Applications, Springer
Texts in Statistics, Springer New York, third edition

15

	A sample R session
	Time series primer with R
	R application: the GX 5-1 X-ray binary-star system
	R application: programming your own MCMC algorithm
	Rediscovering 51 Peg b with Systemic Live
	Using Period04 in the analysis of astronomical time series

